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Abstract
Multi-relational graph is a ubiquitous and important data structure, allowing
flexible representation of multiple types of interactions and relations between
entities. Similar to other graph-structured data, link prediction is one of the
most important tasks on multi-relational graphs and is often used for knowl-
edge completion. When related graphs coexist, it is of great benefit to build
a larger graph via integrating the smaller ones. The integration requires pre-
dicting hidden relational connections between entities belonged to different
graphs (inter-domain link prediction). However, this poses a real challenge to
existing methods that are exclusively designed for link prediction between en-
tities of the same graph only (intra-domain link prediction). In this study, we
propose a new approach to tackle the inter-domain link prediction problem
by softly aligning the entity distributions between different domains with op-
timal transport and maximum mean discrepancy regularizers. Experiments
on real-world datasets show that optimal transport regularizer is beneficial
and considerably improves the performance of baseline methods.
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1 Introduction
Multi-relational data represents knowledge about the world and provides a
graph-like structure of this knowledge. It is defined by a set of entities and a
set of predicates between these entities. The entities can be objects, events, or
abstract concepts while the predicates represent relationships involving two
entities. A multi-relational data contains a set of facts represented as triplets
(eh, r, et) denoting the existence of a predicate r from subject entity eh to object
entity et. In a sense, multi-relational data can also be seen as a directed graph
with multiple types of links (multi-relational graph).

A multi-relational graph is often very sparse with only a small subset
of true facts being observed. Link prediction aims to complete a multi-
relational graph by predicting new hidden true facts based on the existing
ones. Many existing methods follow an embedding-based approach which
has been proved to be effective for multi-relational graph completion. These
methods all aim to find reasonable embedding representations for each entity
(node) and each predicate (type of link). In order to predict if a fact (eh, r, et)
holds true, they use a scoring function whose inputs are embeddings of the
entities eh, et and the predicate r to compute a prediction score.

Despite achieving state of the art for link prediction tasks, existing meth-
ods are exclusively designed and limited to intra-domain link prediction.
They only consider the case in which both entities belong to the same re-
lational graph (intra-domain). When the needs for predicting hidden facts
between entities of different but related graphs (inter-domain) arise, unfortu-
nately, the existing methods are inapplicable. One of such examples is when
it is necessary to build a large relational graph by integrating several existing
smaller graphs whose entity sets are related. This study proposes to tackle
the inter-domain link prediction problem by learning suitable embedding
representation that minimizes dissimilarity between entity distributions of
related domains.

To measure dissimilarity of entity distributions, two popular divergences,
namely optimal transport’s Wasserstein distance (WD) and the maximum
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mean discrepancy (MMD), are investigated. Given two probability distri-
butions, optimal transport computes an optimal transport plan that gives
the minimum total transport cost to relocate masses between the distribu-
tions. The minimum total transport cost is often known under the name of
Wasserstein distance. In a sense, the computed optimal transport plan and
the corresponding Wasserstein distance provide a reasonable alignment and
quantity for measuring the dissimilarity between the supports/domains of
the two distributions. Minimizing Wasserstein distance has been proved to
be effective in enforcing the alignment of corresponding entities across differ-
ent domains and is successfully applied in graph matching [1], cross-domain
alignment [2], and multiple-graph link prediction problems [3]. As another
popular statistical divergence between distributions, MMD computes dissim-
ilarity by comparing the kernel mean embeddings of two distributions in a
reproducing kernel Hilbert space (RKHS). It has been widely applied in two-
sample tests for differentiating distributions [4, 5] and distribution matching
in domain adaptation tasks [6], to name a few.

In this thesis, we formalize the inter-domain link prediction problem un-
der a setting of two multi-relational graphs whose entities are assumed to
follow the same underlying distribution. This assumption is fundamental for
the proposed method to be effective in connecting entity distributions of the
two graphs.

1.1 Summary of the contributions
In summary, the main contributions of the thesis are the following:
• We are the first to consider the inter-domain link prediction problem

which aims to predict links between entities of different domains. We
give a formal definition of the problem setting.

• We propose a method to tackle the problem and investigate two variants
based on optimal transport and MMD regularizers.

• We conduct experiments on four datasets, which demonstrates promis-
ing results. The proposed method based on optimal transport regularizer
outperforms baseline methods for the inter-domain link prediction tasks
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while preserving similar performance for the intra-domain link predic-
tion tasks.

1.2 Organization of the thesis
The thesis is organized as follows. Section 2 gives a general introduction of
link prediction problems in multi-relational graphs and a formal problem set-
ting of inter-domain link prediction. Existing methods for intra-domain link
prediction and related works on inter-domain link prediction are reviewed
in section 3. Section 4 introduces preliminary knowledge of components
employed in the proposed method, which includes methods to learn embed-
ding representations of multi-relational graphs and approximating methods
to compute distributional divergences. The proposed method is elaborated
in section 5. The last two sections 6 and 7 are for experiments and concluding
remarks.

2 Background and Problem Setting
2.1 Link prediction in multi-relational graph
Multi-relational graph is a generalized notion of graph that allows different
types of links between nodes. A multi-relational graphG = (E ,R, T ) consists
of three components: a set of entities (nodes) E , a set of predicates (types of
links)R, and a set of true facts (links) T . Formally,
• E = {e1, ..., en}: ei are entities. The entities could be anything, from a

person, a place, or an object. E.g. Berlin, Germany, Prof_X , Stud_A,
Comp_Science, etc.

• R = {r1, ..., rm}: rk are predicates (relations). They classify types of rela-
tionships occuring between entities. E.g. Is_Capital_Of , Is_Supervisor_Of ,
Major_In, etc.

• T = {(ei1 , rk1 , ej1), (ei2 , rk2 , ej2), ...}: (ei, rk, ej) are observed true facts
about relationships between entities. E.g. (Berlin, Is_Capital_Of,Germany),
(Prof_X, Is_Supervisor_Of, Stud_A), (Stud_A,Major_In, Comp_Science),
etc.
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(a) A multi-relational graph

(b) Intra-domain link prediction in a multi-
relational graph

Figure 1: Figure 1a depicts a multi-relational graph about a university where
the entities ei are professors, students, staffs, research fields, and study objects,
etc., and the predicates are types of relationships between these entities.
Figure 1b shows an example of intra-domain link prediction in this graph.
The entities of candidate triplets for prediction both belong to the same graph.

Figure 1a illustrates an example of multi-relational graph.
Link prediction is a problem of prime interest for graph-structured data.

It is to predict if unconnected pairs of nodes have hidden links between them
or not. In the context of multi-relational graph, the goal is to predict if an
entity ei has a relationship rk with an entity ej , i.e. to predict if an unobserved
triplet (ei, rk, ej) is true or not.
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Figure 2: An example of inter-domain link prediction for two related graphs
G1 and G2, which both are about relationships between personnel and study
objects of different universities. The entities of candidate triplets for predic-
tion lie on different graphs.

Conventional setting of the problem consider prediction for triplets (ei, rk, ej)
whose both entities ei, ej belongs to a same graph G (intra-domain link pre-
diction), e.g. figure 1b. On the other hand, this study considers a different
problem setting called inter-domain link prediction. It is motivated by the
need to integrate graph data from different related sources. Let’s say we have
several graphs G1, G2, ..., Gl which all consider similar types of relationships
between entities of the same kind. Naturally, we want to build a richer graph
G by combining these related graphs. This requires predicting links between
entities that lie not on the same graph but on different graphs Gi, e.g. figure
2. Examples of possible application scenarios are discussed in section 2.2.

2.2 Inter-domain link prediction problem
We give a formal definition of the inter-domain link prediction problem with
the input and output as follows.
• Input: Two multi-relational graphsG1 = (E1,R1, T 1) andG2 = (E2,R2, T 2)

with the entity sets E t = {et1, ..., etnt
}, the predicate setsRt = {rt1, ..., rtmt

},
and the sets of true facts T t = {(eti, rtk, etj)}, t ∈ {1, 2} such that:

– R1 andR2 are the same, i.e. R1 ≡ R2 ≡ R = {r1, ..., rk}.
– the entities of both graphs follow the same underlying distribution,
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i.e. ∃π eti ∼ π.
– E1 ∩ E2 = Ec = {ec1, ..., ecnc

}: The entity sets could be completely
distinct (nc = 0) or share some small amount of common entities
(nc ≪ n1, n2). In the latter case, the identities of common entities are
known.

• Output: For each inter-domain triplet (e1i , rk, e2j) (or (e2i , rk, e1j)), output a
score of the likelihood that the triplet holds true.

In this problem setting, G1, G2 are not completely independent but rather
closely related to each other. They share exactly the same set of predicates
and their entity sets are distributionally similar. This relatedness is crucial
for the feasibility of the problem.

Besides, we do not require the entity sets E1 and E2 to be strictly over-
lapped, they can share no common entities. However, a small amount of
common entities are greatly beneficial to the proposed method as being seen
in later experiments.

The following are some possible real scenarios where the distributional
similarity is relatively satisfied and the above problem setting can be applied
to integrate the graphs.
• Gi are graph data about personnel (professors, students, staffs) and ob-

jects (research fields, study objects) of different public universities in
a country, e.g. Kyoto University, Tokyo University, Osaka University,
etc. Since all public universities have similar structures with similar
components, it can be assumed that the entity sets E i follow the same
distribution. Furthermore, overlapped entities could be research fields
and study objects that are common between the universities.

• Gi are graph data collected on different populations of nearby areas, such
as Kyoto, Osaka, Kobe, etc. Since the population live in the same sphere
of similar cultural/socio-economic backgrounds (Kansai region), it is
reasonable to assume that the entity sets E i follow similar distributions
to an extent. Overlapped entities could be people who live within the
borders.

• Etc.
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However, datasets for these examples are not available. Therefore, in the
experiment, we create G1 and G2 by randomly sampling entities from a larger
graph G.

To compute the prediction score for each inter-domain triplet, we follow
the embedding approach. That is to learn suitable embedding representa-
tion at

i and Rk for each entity eti and each predicate rk, and learn a scoring
function f to compute a score f(ai,Rk, aj) of a triplet (ei, rk, ej). Due to the
distributional similarity of E1 and E2, we are encouraged to learn at

i so that
{a1

1, ..., a
1
n1
} and {a2

1, ..., a
2
n2
} also follow the same distribution.

3 Related Works
In recent years, the embedding-based approach has become popular in deal-
ing with the link prediction task on a multi-relational knowledge graph (intra-
domain). One of the pioneering works in this direction is TransE [7]. The
model is inspired by the intuition from Word2Vec [8,9] that many predicates
represent linear translations between entities in the latent embedding space,
e.g. aJapan − aTokyo ≈ aGermany − aBerlin ≈ ais_capital_of. Therefore, TransE tries to
learn low-dimensional embedding vectors so that ah + ar ≈ at for a true fact
(eh, r, et). TransE is suitable for 1-to-1 relationships only. Following transla-
tional models such as TransH, TransR, and TransD [10–12] are designed to
deal with n-to-1, 1-to-n, and n-to-n relationships. Furthermore, tensor-based
models such that RESCAL, DistMult, and SimplE [13–15] also gain huge
interest. RESCAL converts a multi-relational graph data into a 3-D tensor
whose first two modes indicate the entities and the third mode indicates the
predicates. A low-rank decomposition technique is employed to compute
embedding vectors of entities and embedding matrices of predicates. Dist-
Mult and SimplE further extend RESCAL by using diagonal matrices instead
of full matrices to represent predicates and learning two embedding vectors
dependently instead of one vector for each entity. Besides, neural network
and complex vector-based models [16,17] are also introduced in the literature.
Further details can be found in [18].
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To the best of our knowledge, the proposed method is the first to consider
the inter-domain link prediction problem between multi-relational graphs.
Existing methods in the literature do not directly deal with the problem. The
closest line of research focuses on entity alignment in multilingual knowledge
graphs, which often aims to match words of the same meanings between dif-
ferent languages. The first work in this line of research is MTransE [19]. It
employs TransE to independently embed different knowledge graphs and
perform matching on the embedding spaces. Other methods like JAPE [20]
and BootEA [21] further improve MTransE by exploiting additional attributes
or description information and bootstrapping strategy. MRAEA [22] directly
learns multilingual entity embeddings by attending over the entities’ neigh-
bors and their meta semantic information. Other methods [23, 24] apply
Graph Neural Networks for learning alignment-oriented embeddings and
achieve state-of-the-art results in many datasets. All these entity-matching
methods implicitly assume most entities in one graph to have corresponding
counterparts in the other graph, e.g. words in one lingual graph to have the
same meaning words in the other lingual graph. Meanwhile, the proposed
method only assumes the similarity between entity distributions.

Minimizing a dissimilarity criterion between distributions is a popular
strategy for distribution matching and entity alignment problems. Cao et al.
propose Distribution Matching Machines [6] that optimizes maximum mean
discrepancy (MMD) between source and target domains for unsupervised
domain adaptation tasks. The criterion is successfully applied in distribution
matching and domain confusion tasks as well [25, 26]. Besides Wasserstein
distance (WD), Gromov-Wasserstein distance (GWD) [27] also is a popular
optimal transport metric. It measures the topological dissimilarity between
distributions lying on different domains. GWD often requires much heavier
computation than WD due to nested loops of Sinkhorn algorithm in current
implementations [27]. Applying optimal transport into the graph matching
problem, Xu et al. propose Gromov-Wasserstein Learning framework [1] for
learning node embedding and node alignment simultaneously, and achieve
state of the art in various graph matching datasets. Chen et al. [2] propose
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Graph Optimal Transport framework that combines both WD and GWD for
entity alignment. The framework is shown to be effective in many tasks
such as image-text retrieval, visual question answering, text generation, and
machine translation. Due to the computational complexity of GWD, each
domain considered in [1, 2] only contains less than several hundred entities.
Phuc et al. [3] propose to apply WD to solve the intra-domain link prediction
problem on two graphs simultaneously. In terms of technicality, the method is
the most similar to the proposed method; however, it only focuses on the intra-
domain link prediction problem on undirected homogeneous graphs and
requires most of the nodes in one graph to have corresponding counterparts
in the other graph.

4 Preliminary
This section briefly introduces the components that are employed in the pro-
posed method.

4.1 RESCAL
RESCAL [13] formulates a multi-relational data as a three-way tensor X ∈
Rn×n×m, where n is the number of entities and m is the number of predicates.
Xi,j,k = 1 if the fact (ei, rk, ej) exists and Xi,j,k = 0 otherwise. In order to
find proper latent embeddings for the entities and the predicates, RESCAL
performs a rank-d factorization where each slice along the third mode Xk =

X·,·,k is factorized as

Xk ≈ ARkA
⊤, for k = 1, ...,m.

Here, A = [a1, ..., an]
⊤ ∈ Rn×d contains the latent embedding vectors of the

entities and Rk ∈ Rd×d is an asymmetric matrix that represents the interac-
tions between entities in the k-th predicate.

Originally, it is proposed to learn A and Rk with the regularized squared
loss function

min
A,Rk

g(A,Rk) + reg(A,Rk),
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where

g(A,Rk) =
1

2

(∑
k

∥Xk −ARkA
⊤∥2F

)
and reg is the following regularization term

reg(A,Rk) =
1

2
µ

(
∥A∥2F +

∑
k

∥Rk∥2F

)
.

µ > 0 is a hyperparameter.
It is later proposed by the authors of RESCAL to learn the embeddings

with pairwise loss training [28], i.e. using the following margin-based ranking
loss function

min
A,Rk

L(A,Rk) =
∑

(ei,rk,ej)∈D+

∑
(el,rh,et)∈D−

L(fijk, flth) + reg(A,Rk), (1)

where D+ and D− are the sets of all positive triplets (true facts) and all
negative triplets (false facts), respectively. fijk denotes the score of (ei, rk, ej),
fijk = f(ai,Rk, aj) = a⊤

i Rkaj and L is the ranking function

L(f+, f−) = max(1 + f− − f+, 0).

The negative triplet set D− is often generated by corrupting positive triplets,
i.e. replacing one of the two entities in a positive triplet (ei, rk, ej) with a
randomly sampled entity.

The pairwise loss training aims to learn A and Rk so that the score f+ of a
positive triplet is higher than the score f− of a negative triplet. Moreover, the
margin-based ranking function is more flexible and easier to optimize with
stochastic gradient descent (SGD) than the original squared loss function. In the
proposed method, the pairwise loss training is adopted.

4.2 Optimal Transport
Optimal Transport (OT) provides a very powerful tool for comparing distribu-
tions. It was traditionally studied for the economic problem of transportation
and allocations of resources. Given two piles of sand with the same weight
and different shapes, OT aims to find the best way to move the sand from
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one pile to the other with the minimum total effort. In mathematical setting,
that problem is cast as that of comparing two probability distributions. For
a predefined cost of moving a unit mass in space, OT finds the best way to
morph or transport the first distribution into the second distribution that has
the minimum total transportation cost. If the predefined cost has nice prop-
erties, e.g. being a distance, the minimum total transportation cost defines a
distance between probability distributions. Such a distance is often called the
Wasserstein distance.

The exact computation of Wasserstein distance is often prohibitive, e.g.
cubic time when using linear programming. To address this computational
burden, a number of efficient methods for approximating the distance have
been investigated based on primal and dual formulations of optimal transport.
4.2.1 Primal formulation
Let’s consider two probability distributions π1 = (p1,A1) and π2 = (p2,A2),
where p1 ∈ Rn1

+ and p2 ∈ Rn2
+ are probability vectors that satisfy p1⊤

1n1 =

p2⊤
1n2 = 1 and A1 = [a1

1, ..., a
1
n1
]⊤ ∈ Rn1×d and A2 = [a2

1, ..., a
2
n2
]⊤ ∈ Rn2×d

are the corresponding supports. Here, 1n indicates a n-dimensional vector of
ones. Let a matrix C ∈ Rn1×n2

+ be a predefined transport cost matrix between
the two distributions. For example, C can be defined as

Cij = ∥a1
i − a2

j∥2.

In its primal formulation, OT solves the following minimization problem.

min
P
⟨P,C⟩ =

∑
i,j

PijCij

subject to P1n1 = p1

P⊤
1n2 = p2

P ≥ 0

(2)

A feasible matrixP that satisfies the problem’s constraints is called a transport
plan and the associated value ⟨P,C⟩ is called its transport cost. A transport
plan P∗ that gives the minimum transport cost, P∗ = argminP⟨P,C⟩, is called
an optimal transport plan. The minimum cost ⟨P∗,C⟩ defines a distance
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between the two distributionsπ1 andπ2, which is often called the Wasserstein
distance. The optimal transport plan P∗ gives reasonable guidance of how
to morph/transport one distribution into the other while the Wasserstein
distance provides a measurement of how similar the two distributions are.

In the scope of multi-relational graphs, if one wants to compare two entity
distributions, p1 and p2 could be predefined over the sets of entities, normally
being set to be uniform and the entity embeddings could be seen as the
supports A1 and A2.

A computation-efficient approach to approximate the optimal transport
plan and Wasserstein distance has been proposed by Cuturi et al. [29]. In-
stead of the exact optimal transportP∗, they compute an entropic-regularized
optimal transport plan Pλ via minimizing a cost M as follows,

Pλ = argmin
P

M(P) = ⟨P,C⟩+ 1

λ

∑
i,j

Pij logPij, (3)

where λ > 0 is a hyperparameter controlling the effect of the negative entropy
of matrix P.

It is known that Pλ admits a unique representation of the following form

Pλ = diag(u)Kdiag(v),

where diag(u) indicates a diagonal matrix whose diagonal elements are ele-
ments of u. The matrix K = e−λC is the element-wise exponential of −λC.
Vectors u and v can be computed via Sinkhorn iteration

(u,v)←
( π1

Kv
,

π2

K⊤u

)
.

The detailed computation of Pλ is summarized in algorithm 1.
With large enough λ, emperically when λ > 50, algorithm 1 converges

quickly. The resulting Pλ and ⟨Pλ,C⟩ are highly accurate approximation of
P∗ and the Wasserstein distance.
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Algorithm 1: Sinkhorn algorithm for computing Pλ [29]
Input: C ∈ Rn1×n2

+ , p1 ∈ Rn1
+ , p2 ∈ Rn2

+ , λ > 0, thresh > 0

1 K = e−λC; v = 1n2

2 err = thresh
3 while err ≥ thresh do
4 u1 = u
5 u = p1

Kv

6 v = p2

KT u

7 err = ∥u1 − u∥1
8 end
9 P λ = diag(u)Kdiag(v)

Output: P λ

4.2.2 Dual formulation
In its dual form, OT solves the following maximization problem which is the
dual problem of (2).

max
f∈Rn1 ,g∈Rn2

⟨f ,p1⟩+ ⟨g,p2⟩

subject to fi + gj ≤ Cij

In the special case where Cij = ∥a1
i − a2

j∥2, the above problem can be rewrite
as follows [30].

max
f :Rd→R

Ex∼π1 [f(x)]− Ey∼π2 [f(y)]

subject to Lip(f) ≤ 1

(4)

Here, Lip(f) = sup
{

|f(x)−f(y)|
∥x−y∥2 : x, y ∈ Rd

}
is the Lipschitz constant of func-

tion f 1).
Thanks to strong duality, the maximum of problem (4) is equal to the

minimum of problem (2). Therefore, the Wasserstein distance can be com-
puted by finding a function f that maximizes its value difference between
two distribution π1 and π2 while satisfying the Lipschitz constant condition.

1) Optimizing over a function f is equivalent to optimizing over vectors f ,g in the maxi-
mization, because the maximum only depends on the values of f on the supports of π1

and π2.
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This problem is by no means easier than its primal counterpart. However, it
could again be solved approximately.

Gulrajani et al. [31] proposed to approximate (4) with the following prob-
lem.

max
Θ

Ex∼π1 [fΘ(x)]− Ey∼π2 [fΘ(y)]− λEx̂∼π(∥∇x̂fΘ(x̂)∥2 − 1)2 (5)

Here, fΘ is a neural network with parameterΘ. π defines sampling uniformly
along straight lines between pairs of samples from π1 and π2. The third term
is the regularization for enforcing the Lipschitz constant condition. λ > 0

is a hyperparameter. This relaxed problem could be optimized by stochastic
gradient descent with mini-batch sampling.

Besides (5), other approximations for the dual formulation have also been
proposed in [32] for quadratic cost, Cij = ∥a1

i − a2
j∥22, using input convex

neural networks and in [33] for a general cost C, to name a few.
Generally, approximating the Wasserstein distance with primal and dual

formulation approaches both have their advantages and disadvantages. The
dual formulation approach is highly scalable to very large data since it allows
training with mini-batches; however, it gives little control and guarantee on
how accurate the approximation is. On the other hand, the primal formulation
approach allows highly accurate approximation, but it is not applicable in
large data regimes due to quadratic computation time.

4.3 Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) is another popular divergence for prob-
ability distributions, which is originally introduced as a non-parametric statis-
tic to test if two distributions are different [4,5]. It is defined as the difference
between mean function values on samples generated from the distributions.
If MMD is large, the two distributions are likely to be distinct. On the other
hand, if MMD is small, the two distributions can be seen to be similar.

Formally, letπ1 andπ2 be two distributions whose the supports are subsets
of Rd, and F be a class of functions f : Rd → R. Usually, F is selected to be
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the unit ball in a universal RKHSH. Then MMD is defined as

M(F ,π1,π2) = sup
f∈F

(Ex∼π1 [f(x)]− Ey∼π2 [f(y)]) .

From sample sets A1 = {a1
1, ..., a

1
n1
} and A2 = {a2

1, ..., a
2
n2
}, at

i ∈ Rd, sam-
pled from the two distributions, MMD can be unbiasedly approximated as
follows [4, 30].

M(A1,A2) =
1

n1(n1 − 1)

∑
i,i′

k(a1
i , a

1
i′) +

1

n2(n2 − 1)

∑
j,j′

k(a2
j , a

2
j′)

− 2

n1n2

∑
i,j

k(a1
i , a

2
j)

(6)

Here, k(·, ·) is often chosen as the Gaussian kernel

k(x,y) = exp(−σ∥x− y∥22), σ > 0,

even though other kernels such as the Laplacian, exp(−σ∥x− y∥1), σ > 0, or
the inverse multiquadratics, (σ + ∥x− y∥22)−

1
2 , σ > 0, can also be used. When

A1 and A2 are the embeddings of entities in two domains, MMD represents
a dissimilarity between the domains’ entity distributions.

5 Proposed Method
5.1 Proposed objective function
The proposed method’s objective function consists of two components. The
first component is for learning embedding representations of the entities and
the predicates of each multi-relational graph, which is based on an existing
tensor-factorization method. RESCAL [13] is specifically chosen in the pro-
posed method due to its simplicity and generally competitive performance.
The second component is a regularization term for enforcing the entity em-
bedding distributions of the two graphs to become similar.

For each graphGt, lets denote the entity embeddings asAt = [at
1, ..., a

t
nt
]⊤ ∈

Rnt×d, where d is the embedding dimension. If the entity sets E1 and E2

overlap, the embeddings of common entities are set to be identical in both
domains, i.e. At = [A

′t,Ac]
⊤ where Ac ∈ Rd×nc is the embeddings of com-

mon entities. The embedding of predicate rk ∈ R is denoted as Rk ∈ Rd×d
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for k ∈ {1, ...,m}. The objective function of the proposed method is given as

F (A1,A2,Rk, [P]) = L(A1,Rk) + L(A2,Rk) + αM(A1,A2, [P]). (7)

In (7), the first two terms L(At,Rk) are the loss functions of RESCAL and are
defined as in (1). The third term M(A1,A2, [P]) is the Wasserstein distance
(WD) or the MMD discrepancy between the entity distributions of the two
graphs. In the case of WD regularizer, the primal formulation with entropic
regularization is used to approximate the distrance, i.e. M = M(A1,A2,P)

as defined in (3) with P ∈ Rn1×n2
+ . In the case of MMD regularizer, M =

M(A1,A2) is defined as in (6).
The objective function F (A1,A2,Rk) (MMD regularizer) is directly opti-

mized with SGD. On the other hand, F (A1,A2,Rk,P) (WD regularizer) is
minimized iteratively. In each epoch, the transport plan P is fixed, and the
embedding vectors A1, A2, and Rk are updated with SGD. At the end of each
epoch, A1, A2, and Rk are fixed and the plan P is sequentially updated via
algorithm 1.

Via L(At,Rk), the underlying distribution governing E t is learned and
characterized into At. In the latent space Rd, embedding vectors at

i of entities
with similar roles (entities who engage in many same kinds of relationships,
e.g. professors in the same department engage in many similar interac-
tions/relationships towards students of the same department) lie close to-
gether. Since E1 and E2 follow the same distribution, the learned embedding
distributions {a1

1, ..., a
1
n1
} and {a2

1, ..., a
2
n2
} are expected to be in similar lay-

outs/shapes. However, they do not necessarily stay in the same absolute
location in the latent space due to randomness in optimization and initializa-
tion of L(At,Rk) (e.g. figures 4a).

Minimizing the dissimilarity M(A1,A2, [P]) helps to enhance the similar-
ity both in shapes and absolute positions of the embedding distributions. In
theory, it could be possible to "pull" the distributions closer via minimizing
M even if they are initially disjoint and away in space (a possible scenario if
the node sets are distinct), but the optimization will likely be unstable and
difficult in practice. When the two node sets share even some small amount
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of entities, embedding vectors of the common entities act as anchors to hold
the embedding distributions in close proximity right from the beginning of
optimization. This makes the optimization process become easier. We will
see in the later experiments that while it does work in some scenarios of
distinct node sets, the proposed method favors overlapping scenarios more.

Through optimizing bothL(At,Rk) andM(A1,A2, [P]), entities with sim-
ilar roles in G1 and G2 are expected to lie close together in the latent embed-
ding space. This is the intuition of the proposed method’s inter-domain link
prediction. If e1i ∈ E1 and e2i ∈ E2 have similar embeddings a1

i and a2
i , the

inter-domain fact (e1i , rk, e2j) is likely to exist if the intra-domain fact (e2i , rk, e2j)
exists thanks to their similar scores a1

i
⊤
Rka

2
j ≈ a2

i
⊤
Rka

2
j .

5.2 Discussion of possible variants
Besides using MMD and the primal formulation of optimal transport, it is
also possible to use the dual formulation of optimal transport to compute the
term M(A1,A2) in (7). In this case, the objective F has the following form

F (A1,A2,Rk) = L(A1,Rk) + L(A2,Rk) + α(E[fΘ(a1
i )]− E[fΘ(a2

j)]),

where fΘ is the neural network that maximizes (5). The optimization of
F then involves an iterative min-max procedure, i.e. alternate between ap-
proximately maximizing (5) to find fΘ and minimize F with respect to the
embeddings.

As mentioned in section 4.2.2, dual formulation of optimal transport does
not guarantee accurate approximation of Wasserstein distance. The error will
likely increase further if one only solves (5) approximately in the min-max op-
timization. Therefore, using the dual approximation of Wasserstein distance
might pose a challenge for F to learn A1 and A2 with similar distributions.
However, on the other hand, it allows scalability to graphs with a larger
number of entities than the primal approximation.

Other variants of (7) could come from different choices of embedding
methods besides RESCAL. Different methods design different scoring func-
tions f for their loss objectives L. DisMult [14] and SimplE [15] use similar
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functions as RESCAL, fDisMult = a⊤
i diag(rk)aj and fSimplE = 1

2
(a⊤

i diag(rk)aj +

a′⊤
i diag(r′k)a′

j). Translational models like TransE [7] choose a transitional dif-
ference of the embedding vectors as its function, fTransE = −∥ai + rk − aj∥1,2.
The neural tensor network models like NTN [16] generalize RESCAL’s ap-
proach by combining traditional MLPs and bilinear operators in its scoring
function, fNTN = r⊤1k tanh(a

⊤
i R1kaj + R2kai + R3kaj + r2k). More compli-

cated scoring functions are also employed in other embedding methods [18].
Nevertheless, as long as an embedding method could characterize entity dis-
tributions with its learned embeddings, it is a feasible choice for the proposed
method.

Further investigation on variants of the proposed objective (7) with other
embedding methods and dual approximation of Wasserstein distance might
be an interesting research direction, which we leave for future works.

6 Experiments
6.1 Datasets
The datasets used in the experiments are created from four popular knowl-
edge graph datasets, namely FB15k-237 [34], WN18RR [35], DBbook2014, and
ML1M [36]. The FB15k-237 dataset contains 272k facts about general knowl-
edge. It has 14k entities and 237 predicates. The WN18RR dataset consists of
86k facts about 11 lexical relations between 40k word senses. The other two
datasets represent interactions among users and items in e-commerce. The
ML1M (MovieLens-1M) dataset composes of 434k facts with 14k users/items
and 20 relations, while the DBbook2014 has 334k facts with 13k users/items
and 13 relations. To createG1 andG2 for each dataset, two smaller sub-graphs
of around 2k to 3k entities are randomly sampled from the original graph. The
two graphs are controlled to share some amounts of common entities. Differ-
ent levels of entity overlapping are investigated, from 0% (non-overlapping
setting) to around 1.5%, 3%, and 5% (overlapping setting). Moreover, differ-
ent predicates are removed so that G1 and G2 share the same predicate set,
i.e. R1 ≡ R2 ≡ R.
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Intra-domain triplets (ei, rk, ej) whose both entities ei, ej belong to the
same graph are used for training. Inter-domain triplets (ei, rk, ej) whose
entities ei, ej belong to different graphs are used for validating and testing
inter-domain performance. The validation and test ratio is 20 : 80. Even
though the goal is to evaluate a model’s ability to perform inter-domain link
prediction, both inter-domain and intra-domain link prediction performances
are evaluated. This is because the proposed method should improve inter-
domain link prediction while does not harm intra-domain link prediction.
Therefore, 5% of intra-domain triplets are further spared from the training
data for monitoring intra-domain performance.

The details for the case of 3% overlapping are shown in Table 1. In other
cases, the datasets share similar statistics.

Table 1: Details of the datasets in the case of 3% overlapping. The other cases
share similar statistics.

Datasets #Ent G1 #Ent G2 #Rel #Train #Inter Valid #Intra Test #Inter Test
FB15k-237 2675 2677 179 24.3k 4.3k 1.3k 17.7k
WN18RR 2804 2720 10 5.1k 105 148 1.1k

DBbook2014 2932 2893 11 34.6k 6.5k 1.8k 26.8k
ML1M 2764 2726 18 39.3k 6.5k 2k 27k

6.2 Evaluation methods and Baselines
In the experiments, Hit@10 score and ROC-AUC score are used for quantify-
ing both inter-domain and intra-domain performances.
6.2.1 Evaluation with Hit@10
The Hit@10 score is computed by ranking true entities based on their scores.
For each true triplet (ei, rk, ej) in the test sets, one entity ei (or ej) is hidden
to create an unfinished triplet (·, rk, ej) (or (ei, rk, ·)). All entities ecand are
used as candidates for completing the unfinished triplet and the scores of
(ecand, rk, ej) (or (ei, rk, ecand)) are computed. Note that the candidates ecand are
taken from the same entity set as ei (or ej), i.e. if ei (or ej) ∈ E t then entities
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ecand are taken from E t. The ranking of ei (or ej) is computed according to
the scores. The higher “true" entities are ranked the better a model is at
predicting hidden true triplets. Hit@10 score is used for quantifying the link
prediction performance and is calculated as the percentage of “true" entities
being ranked inside the top 10.
6.2.2 Evaluation with ROC-AUC
In order to compute the ROC-AUC score, triplets in the test set are treated as
positive samples. An equal number of triplets are uniformly sampled from
the entity sets and the predicate set to create negative samples. Due to the
sparsity of each graph, it is safe to consider the sampled triplets as negative.
During the sampling process, both sampled entities are controlled to belong
to the same graph in the intra-domain case and belong to different graphs in
the inter-domain case.
6.2.3 Evaluated Models
In the experiments, RESCAL is used as the baseline method. The proposed
method with Wasserstein regularization based on the primal formulation is
denoted as WD while the one with MMD regularization is denoted as MMD.

6.3 Implementation details
6.3.1 Negative sampling
Only intra-domain negative triplets are used in order to train the pairwise
ranking loss (1) with SGD, i.e. negative triplet set D− only contains negative
triplets (el, rh, et) whose both entities belong to the same graph.
6.3.2 Warmstarting
Completely learning from scratch might be difficult since the regularizer M
can add noise at the early state. Instead, it is beneficial to warmstart the pro-
posed method’s embeddings with embeddings roughly learned by RESCAL.
Specifically, we run RESCAL for 100 epochs to learn initial embeddings. Af-
ter that, to maintain the fairness of equal training time, both the proposed
method and RESCAL are warmstarted with the roughly learned embeddings.
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6.3.3 Hyperparameters.
In the implementation, the latent embedding dimension is set to equal 100.
All experiments are run for 300 epochs. Early stopping is employed with a pa-
tience budget of 50 epochs. Other hyperparameters, namely α, learning rate,
and batch size, are tuned on the inter-domain validation set using Optuna [37].
During the tuning process, α is sampled to be between 0.5 and 10.0, while the
learning rate and batch size are chosen from {0.01, 0.005, 0.001, 0.0005} and
{100, 300, 500, 700}, respectively. The hyperparameters of RESCAL is tuned
similarly with fixed α = 0.0. The kernel used in MMD is set to be a mixture
of Gaussian kernels with the bandwidth list of [0.25, 0.5, 1., 2., 4.] ∗ c where c

is the mean Euclidean distance between the entities. All results are averaged
over 10 random runs1).

6.4 Experimental results
The experimental results are shown in Tables 2, 3, 4, and 5. Note that a
random predictor has a Hit@10 score of less than 0.004 and a ROC-AUC score
of around 0.5.
6.4.1 Inter-domain results
As being demonstrated in tables 2 and 3, the proposed method with WD reg-
ularizer works well with the FB15k-237 dataset, which outperforms RESCAL
in all settings. Especially in the overlapping cases where few entities are
shared between the graphs, both Hit@10 and ROC-AUC scores are improved
significantly. The WD regularizer also demonstrates its usefulness with the
DBbook2014 and ML1M datasets. The Hit@10 scores are boosted up in most
cases of overlapping settings, while the ROC-AUC scores are consistently
enhanced over that of RESCAL. Most of the time, the improvements are con-
siderable. However, for the case of the ML1M dataset with 3% overlapping
entities, the WD regularizer causes the Hit@10 score to deteriorate, from 0.230

to 0.213. On the other hand, the MMD regularizer seems not to be benefi-
cial for the task. Unexpectedly, the regularizer introduces noise and reduces

1) The code is available at https://github.com/phucdoitoan/inter-domain_lp

21



Table 2: Inter-domain Hit@10 scores. Italic numbers indicate better results
while bold numbers and bold numbers with asterisk ∗ indicate better results
at significance level p = 0.1 and p = 0.05, respectively. The proposed method
with WD regularizer achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.110 ±0.038 0.027 ±0.003 0.087 ±0.058 0.062 ±0.074

MMD 0.111 ±0.038 0.031 ±0.004 0.085 ±0.057 0.063 ±0.072

WD 0.145 ±0.063 0.024 ±0.004 0.084 ±0.070 0.061 ±0.067

1.5%
RESCAL 0.251 ±0.031 0.025 ±0.002 0.107 ±0.035 0.210 ±0.034

MMD 0.237 ±0.043 0.026 ±0.003 0.109 ±0.037 0.180 ±0.067

WD 0.291 ±0.031
∗ 0.024 ±0.002 0.128 ±0.059 0.240 ±0.031

∗

3%
RESCAL 0.302 ±0.020 0.028 ±0.004 0.266 ±0.056 0.230 ±0.003

∗

MMD 0.292 ±0.020 0.026 ±0.004 0.227 ±0.081 0.228 ±0.002

WD 0.328 ±0.011
∗ 0.025 ±0.004 0.318 ±0.066

∗ 0.213 ±0.006

5%
RESCAL 0.339 ±0.007 0.027 ±0.005 0.389 ±0.032 0.237 ±0.011

MMD 0.334 ±0.006 0.026 ±0.004 0.388 ±0.027 0.236 ±0.010

WD 0.361 ±0.010
∗ 0.031 ±0.004 0.389 ±0.051 0.256 ±0.006

∗

the accuracy of inter-domain link prediction. In the case of the WN18RR
dataset, both RESCAL and the proposed method fail to perform, in which all
Hit@10 and ROC-AUC scores are close to random. This might be due to the
extreme sparsity of the dataset, whose amount of observed triplets is only
about one-fifth of that of the other datasets.

In all the four datasets, sharing some common entities, even with a small
number, is helpful and important for predicting inter-domain links. These
common entities act as anchors between the graphs, which guide the regu-
larizer to learn similar embedding distributions. Without common entities,
the learning process becomes more challenging and often results in uncer-
tain predictors as being shown in the 0% overlapping cases. The overlapping
scenarios are reasonable because, in practice, two related graphs often share
some amounts of common entities, and identifying these common entities in
a small quantity is not expensive.
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Table 3: Inter-domain ROC-AUC scores. Italic numbers indicate better re-
sults while bold numbers and bold numbers with asterisk ∗ indicate better
results at significance level p = 0.1 and p = 0.05, respectively. The proposed
method with WD regularizer achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.504 ±0.092 0.504 ±0.009 0.483 ±0.097 0.464 ±0.173

MMD 0.507 ±0.093 0.500 ±0.010 0.485 ±0.095 0.480 ±0.172

WD 0.548 ±0.118 0.505 ±0.009 0.488 ±0.099 0.495 ±0.179

1.5%
RESCAL 0.793 ±0.044 0.512 ±0.009 0.640 ±0.066 0.805 ±0.027

MMD 0.770 ±0.063 0.507 ±0.009 0.632 ±0.063 0.754 ±0.087

WD 0.837 ±0.033
∗ 0.510 ±0.007 0.671 ±0.087 0.842 ±0.017

∗

3%
RESCAL 0.825 ±0.022 0.503 ±0.009 0.762 ±0.032 0.832 ±0.006

MMD 0.813 ±0.030 0.498 ±0.011 0.714 ±0.060 0.831 ±0.007

WD 0.850 ±0.013
∗ 0.502 ±0.013 0.809 ±0.030

∗ 0.840 ±0.008

5%
RESCAL 0.870 ±0.008 0.498 ±0.021 0.824 ±0.012 0.845 ±0.007

MMD 0.875 ±0.007 0.498 ±0.012 0.823 ±0.015 0.845 ±0.006

WD 0.902 ±0.010
∗ 0.498 ±0.013 0.835 ±0.020 0.867 ±0.003

∗

6.4.2 Intra-domain results
Even though the main goal is to predict inter-domain links, it is preferable
that the regularizers do not harm performance on intra-domain link predic-
tion when fusing the two domains’ entity distributions. As being demon-
strated in table 5, the proposed method is able to maintain similar or better
intra-domain ROC-AUC scores compared to RESCAL. However, it sometimes
requires trade-offs in terms of the Hit@10 score, which is shown in table 4.
Specifically, the WD regularizer worsens the intra-domain Hit@10 scores com-
pared to RESCAL in FB15k-237 with 5% overlapping and ML1M with 1.5%

overlapping settings despite helping improve the inter-domain counterparts.
It also hurts the intra-domain Hit@10 score in ML1M with 3% overlapping
setting.
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Table 4: Intra-domain Hit@10 scores. Bold numbers with asterisk ∗ indicate
better results at significance level p = 0.05. Generally, the proposed method
with WD regularizer preserves the intra-domain Hit@10 scores despite re-
quiring trade-offs in some cases.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.451 ±0.031 0.418 ±0.031 0.468 ±0.011 0.302 ±0.076

MMD 0.461 ±0.029 0.342 ±0.086 0.449 ±0.012 0.307 ±0.070

WD 0.469 ±0.019 0.421 ±0.032 0.472 ±0.014 0.332 ±0.027

1.5%
RESCAL 0.433 ±0.008 0.390 ±0.040 0.296 ±0.039 0.425 ±0.006

∗

MMD 0.438 ±0.008 0.330 ±0.067 0.328 ±0.027 0.423 ±0.036

WD 0.427 ±0.009 0.408 ±0.035 0.291 ±0.038 0.412 ±0.008

3%
RESCAL 0.433 ±0.009 0.476 ±0.074 0.413 ±0.008 0.447 ±0.006

∗

MMD 0.447 ±0.011 0.485 ±0.074 0.411 ±0.017 0.444 ±0.008

WD 0.439 ±0.009 0.620 ±0.026
∗ 0.412 ±0.009 0.413 ±0.021

5%
RESCAL 0.433 ±0.009

∗ 0.455 ±0.038 0.418 ±0.010 0.408 ±0.005

MMD 0.421 ±0.009 0.416 ±0.058 0.420 ±0.014 0407 ±0.004

WD 0.413 ±0.007 0.479 ±0.076 0.412 ±0.022 0.401 ±0.005

6.4.3 Summary
The proposed method with WD regularizer significantly improves the per-
formance of inter-domain link prediction over the baseline method while
being able to preserve the intra-domain performance in the FB15k-237 and
DBbook2014 datasets. In the ML1M dataset, it benefits the inter-domain per-
formance at the risk of decreasing intra-domain Hit@10 scores. Unexpectedly,
the MMD regularizer does not work well and empirically causes deterioration
of the inter-domain performance. These negative results might be due to local
optimal arising when minimizing MMD with a finite number of samples, as
recently studied in [38]. Further detailed analysis would be necessary before
one can firmly judge the performance of the MMD regularizer. We leave this
matter for future works. It is also worth mentioning that, in the experiment
setting, the sampling of G1 and G2 is repeated independently for each over-
lapping level. Therefore, it is not necessary for the link prediction scores to
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Table 5: Intra-domain ROC-AUC scores. Bold numbers with asterisk ∗ indi-
cate better results at significance level p = 0.05. The propose method main-
tains similar or better intra-domain ROC-AUC scores compared to RESCAL.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.925 ±0.018 0.819 ±0.018 0.915 ±0.004 0.897 ±0.022

MMD 0.924 ±0.018 0.818 ±0.019 0.915 ±0.005 0.897 ±0.035

WD 0.928 ±0.006 0.811 ±0.017 0.918 ±0.005 0.932 ±0.004
∗

1.5%
RESCAL 0.929 ±0.003 0.814 ±0.018 0.871 ±0.032 0.950 ±0.003

MMD 0.931 ±0.003 0.807 ±0.029 0.892 ±0.009 0.954 ±0.003

WD 0.932 ±0.006 0.818 ±0.020 0.868 ±0.040 0.954 ±0.002

3%
RESCAL 0.922 ±0.006 0.870 ±0.018 0.885 ±0.008 0.946 ±0.005

MMD 0.926 ±0.005 0.861 ±0.011 0.877 ±0.026 0.948 ±0.003

WD 0.921 ±0.007 0.860 ±0.018 0.890 ±0.005 0.949 ±0.003

5%
RESCAL 0.927 ±0.007 0.869 ±0.007 0.878 ±0.008 0.949 ±0.003

MMD 0.935 ±0.005 0.835 ±0.050 0.879 ±0.008 0.952 ±0.003

WD 0.937 ±0.004
∗ 0.860 ±0.020 0.885 ±0.009

∗ 0.953 ±0.003

monotonically increase when the overlapping level increases.
6.4.4 Embedding visualization
Figures 3, 4, 5 and 6 visualize the entity embeddings learned by RESCAL and
the WD regularizer in the case of 3% overlapping. As being seen in figures 3
and 4, WD can learn more identical embedding distributions than RESCAL
in the case of the FB15k-237 and DBbook2014 datasets. Especially, in the DB-
book2014 dataset, RESCAL can only learn similar shape distributions, but the
regularizer can learn distributions with both similar shape and close absolute
position. However, as being shown in figures 5 and 6, in the WN18RR and
ML1M datasets, the WD regularizer seems to only add noise when learning
the embeddings, which results in no improvement or even degradation of
both intra-domain and inter-domain Hit@10 scores.
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(a) Learned with RESCAL

(b) Learned with WD regularizer

Figure 3: Embedding visualization of FB15k-237 datasets with 3% overlap-
ping. Figure 3a demonstrates entity embeddings learned by RESCAL while
figure 3b depicts entity embeddings learned by the proposed method with
WD regularizer. The proposed method learns more identical embedding dis-
tributions across both domains.

7 Conclusion and Future Work
Inter-domain link prediction is an important task for constructing large multi-
relational graphs from smaller related ones. However, existing methods in
the literature do not directly address this problem. In this paper, we pro-
pose a new approach for the problem via jointly minimizing a divergence
between entity distributions during the embedding learning process. Two
regularizers have been investigated, in which the regularizer based on primal
approximation of Wasserstein distance shows promising results and improves
inter-domain link prediction performance considerably. For future works, we
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(a) Learned with RESCAL

(b) Learned with WD regularizer

Figure 4: Embedding visualization of DBbook2014 datasets with 3% overlap-
ping. Figure 4a demonstrates entity embeddings learned by RESCAL while
figure 4b depicts entity embeddings learned by the proposed method with
WD regularizer. The proposed method learns more identical embedding dis-
tributions across both domains.

would like to verify the proposed method’s effectiveness using more baseline
embedding methods besides RESCAL. Further analysis on the performance of
the MMD-based regularizer will also be conducted. To improve the method’s
scalability to larger graphs, we plan to study the use of dual approximation
of Wasserstein distance as discussed in section 5.2. Last but not least, the
proposed method currently assumes that both domains share the same un-
derlying entity distribution. This assumption is violated when the domains’
entity distributions are not completely identical but partially different, which
is likely to happen in practice. One possible direction for further research is to
adopt unbalanced optimal transport as the regularizer, which flexibly allows
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(a) Learned with RESCAL

(b) Learned with WD regularizer

Figure 5: Embedding visualization of WN18RR datasets with 3% overlapping.
Figure 5a demonstrates entity embeddings learned by RESCAL while figure
5b depicts entity embeddings learned by the proposed method with WD
regularizer. RESCAL is able to learn similar embedding distributions between
the two domains while the proposed method seems to add more noise.

mass destruction and mass creation to deal with distributions’ differences.
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(a) Learned with RESCAL

(b) Learned with WD regularizer

Figure 6: Embedding visualization of ML1M datasets with 3% overlapping.
Figure 6a demonstrates entity embeddings learned by RESCAL while figure
6b depicts entity embeddings learned by the proposed method with WD
regularizer. RESCAL is able to learn similar embedding distributions between
the two domains while the proposed method seems to add more noise.
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