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Abstract. Multi-relational graph is a ubiquitous and important data
structure, allowing flexible representation of multiple types of interactions
and relations between entities. Similar to other graph-structured data,
link prediction is one of the most important tasks on multi-relational
graphs and is often used for knowledge completion. When related graphs
coexist, it is of great benefit to build a larger graph via integrating
the smaller ones. The integration requires predicting hidden relational
connections between entities belonged to different graphs (inter-domain
link prediction). However, this poses a real challenge to existing methods
that are exclusively designed for link prediction between entities of the
same graph only (intra-domain link prediction). In this study, we propose a
new approach to tackle the inter-domain link prediction problem by softly
aligning the entity distributions between different domains with optimal
transport and maximum mean discrepancy regularizers. Experiments on
real-world datasets show that optimal transport regularizer is beneficial
and considerably improves the performance of baseline methods.

Keywords: Inter-domain Link Prediction · Multi-relational data · Opti-
mal Transport.

1 Introduction

Multi-relational data represents knowledge about the world and provides a graph-
like structure of this knowledge. It is defined by a set of entities and a set of
predicates between these entities. The entities can be objects, events, or abstract
concepts while the predicates represent relationships involving two entities. A
multi-relational data contains a set of facts represented as triplets (eh, r, et)
denoting the existence of a predicate r from subject entity eh to object entity
et. In a sense, multi-relational data can also be seen as a directed graph with
multiple types of links (multi-relational graph).

A multi-relational graph is often very sparse with only a small subset of
true facts being observed. Link prediction aims to complete a multi-relational
graph by predicting new hidden true facts based on the existing ones. Many
existing methods follow an embedding-based approach which has been proved to
be effective for multi-relational graph completion. These methods all aim to find
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reasonable embedding presentations for each entity (node) and each predicate
(type of link). In order to predict if a fact (eh, r, et) holds true, they use a scoring
function whose inputs are embeddings of the entities eh, et and the predicate
r to compute a prediction score. Some of the most prominent methods in that
direction are TransE [3], RESCAL [22], DisMult [35], and NTN [27], to name a
few.

TransE [3] model is inspired by the intuition from Word2Vec [18, 19] that many
predicates represent linear translations between entities in the latent embedding
space, e.g. aJapan − aTokyo ≈ aGermany − aBerlin ≈ ais capital of. Therefore, TransE
tries to learn low-dimensional and dense embedding vectors so that ah+ar ≈ at for
a true fact (eh, r, et). Its scoring function is defined accordingly via ‖ah+ar−at‖2.
RESCAL [22] is a tensor factorization-based method. It converts a multi-relational
graph data into a 3-D tensor whose first two modes indicate the entities and
the third mode indicates the predicates. A low-rank decomposition technique
is employed by RESCAL to compute embedding vectors a of the entities and
embedding matrices R of the predicates. Its scoring function is the bilinear
product a>hRrat. DistMult [35] is also a bilinear model and is based on RESCAL
where each predicate is only represented by a diagonal matrix rather than a
full matrix. The neural tensor network (NTN) model [27] generalizes RESCAL’s
approach by combining traditional MLPs and bilinear operators to represent
each relational fact.

Despite achieving state of the art for link prediction tasks, existing methods
are exclusively designed and limited to intra-domain link prediction. They only
consider the case in which both entities belong to the same relational graph
(intra-domain). When the needs for predicting hidden facts between entities
of different but related graphs (inter-domain) arise, unfortunately, the existing
methods are inapplicable. One of such examples is when it is necessary to build a
large relational graph by integrating several existing smaller graphs whose entity
sets are related. This study proposes to tackle the inter-domain link prediction
problem by learning suitable latent embeddings that minimize dissimilarity
between the domains’ entity distributions.

Two popular divergences, namely optimal transport’s Wasserstein distance
(WD) and the maximum mean discrepancy (MMD), are investigated. Given
two probability distributions, optimal transport computes an optimal transport
plan that gives the minimum total transport cost to relocate masses between
the distributions. The minimum total transport cost is often known under the
name of Wasserstein distance. In a sense, the computed optimal transport plan
and the corresponding Wasserstein distance provide a reasonable alignment and
quantity for measuring the dissimilarity between the supports/domains of the two
distributions. Minimizing Wasserstein distance has been proved to be effective
in enforcing the alignment of corresponding entities across different domains
and is successfully applied in graph matching [34], cross-domain alignment [7],
and multiple-graph link prediction problems [25]. As another popular statistical
divergence between distributions, MMD computes the dissimilarity by comparing
the kernel mean embeddings of two distributions in a reproducing kernel Hilbert
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space (RKHS). It has been widely applied in two-sample tests for differentiating
distributions [12, 13] and distribution matching in domain adaptation tasks [6],
to name a few.

The proposed method considers a setting of two multi-relational graphs whose
entities are assumed to follow the same underlying distribution. For example, the
multi-relational graphs can be about relationships among users/items in different
e-commerce flatforms of the same country. They could also be knowledge graphs
of semantic relationships between general concepts that are built from different
common-knowledge sources, e.g. Freebase and DBpedia. In both examples, it is
safe to assume that the entity sets are distributionally identical. This assump-
tion is fundamental for the regularizers to be effective in connecting the entity
distributions of the two graphs.

2 Preliminary

This section briefly introduces the components that are employed in the proposed
method.

2.1 RESCAL

RESCAL [22] formulates a multi-relational data as a three-way tensor X ∈
Rn×n×m, where n is the number of entities and m is the number of predicates.
Xi,j,k = 1 if the fact (ei, rk, ej) exists and Xi,j,k = 0 otherwise. In order to find
proper latent embeddings for the entities and the predicates, RESCAL performs
a rank-d factorization where each slice along the third mode Xk = X·,·,k is
factorized as

Xk ≈ ARkA
>, for k = 1, ...,m.

Here, A = [a1, ...,an]> ∈ Rn×d contains the latent embedding vectors of the
entities and Rk ∈ Rd×d is an asymmetric matrix that represents the interactions
between entities in the k-th predicate.

Originally, it is proposed to learn A and Rk with the regularized squared loss
function

min
A,Rk

g(A,Rk) + reg(A,Rk),

where

g(A,Rk) =
1

2

(∑
k

‖Xk −ARkA
>‖2F

)
and reg is the following regularization term

reg(A,Rk) =
1

2
µ

(
‖A‖2F +

∑
k

‖Rk‖2F

)
.

µ > 0 is a hyperparameter.
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It is later proposed by the authors of RESCAL to learn the embeddings with
pairwise loss training [21], i.e. using the following margin-based ranking loss
function

min
A,Rk

L(A,Rk) =
∑

(ei,rk,ej)∈D+

∑
(el,rh,et)∈D−

L(fijk, flth) + reg(A,Rk), (1)

where D+ and D− are the sets of all positive triplets (true facts) and all negative
triplets (false facts), respectively. fijk denotes the score of (ei, rk, ej), fijk =
a>i Rkaj and L is the ranking function

L(f+, f−) = max(1 + f− − f+, 0).

The negative triplet set D− is often generated by corrupting positive triplets, i.e.
replacing one of the two entities in a positive triplet (ei, rk, ej) with a randomly
sampled entity.

The pairwise loss training aims to learn A and Rk so that the score f+ of
a positive triplet is higher than the score f− of a negative triplet. Moreover,
the margin-based ranking function is more flexible and easier to optimize with
stochastic gradient descent (SGD) than the original squared loss function. In the
proposed method, the pairwise loss training is adopted.

2.2 Optimal Transport

Given two probability vectors π1 ∈ Rn1
+ and π2 ∈ Rn2

+ that satisfy π>1 1n1
=

π>2 1n2
= 1, a matrix P ∈ Rn1×n2

+ is called a transport plan between π1 and π2

if P1n2 = π1 and P>1n1 = π2. Here, 1n indicates a n-dimensional vector of
ones. Let’s denote the supports of π1 and π2 as A1 = [a11, ...,a

1
n1

]> ∈ Rn1×d and

A2 = [a21, ...,a
2
n2

]> ∈ Rn2×d, respectively. A transport cost C ∈ Rn1×n2
+ can be

defined as
Cij = ‖a1i − a2j‖22.

Given a transport matrix C, the transport cost of a transport plan P is computed
by

〈P,C〉 =
∑
i,j

PijCij .

A transport plan P∗ that gives the minimum transport cost, P∗ = arg minP〈P,C〉,
is called an optimal transport plan and the corresponding minimum cost is called
the Wasserstein distance. The optimal transport plan P∗ gives a reasonable
“soft” matching between the two distributions (π1,A1) and (π2,A2) while the
Wasserstein distance provides a measurement of how far the two distributions
are from each other.

In the scope of multi-relational graphs, π1 and π2 are predefined over the
sets of entities, normally being set to be uniform and the supports A1 and A2

can be seen as embeddings of the entities.
The computational complexity of computing the optimal transport plan and

Wasserstein distance is often prohibitive. An efficient approach to compute an
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approximation has been proposed by Cuturi et al. [9]. Instead of the exact
optimal transport P∗, they compute an entropic-regularized transport plan Pλ

via minimizing a cost M as follows,

Pλ = arg min
P

M(P) = 〈P,C〉+
1

λ

∑
i,j

Pij logPij , (2)

where λ > 0 is a hyperparameter controlling the effect of the negative entropy of
matrix P. With large enough λ, emperically when λ > 50, P∗ and the Wasserstein
distance can be accurately approximated by Pλ and M(Pλ).

Pλ has a unique solution of the following form

Pλ = diag(u)Kdiag(v),

where diag(u) indicates a diagonal matrix whose diagonal elements are elements
of u. The matrix K = e−λC is the element-wise exponential of −λC. Vectors u
and v can be initialized randomly and updated via Sinkhorn iteration

(u,v)←
( π1

Kv
,

π2

K>u

)
.

2.3 Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) is originally introduced as a non-parametric
statistic to test if two distributions are different [12, 13]. It is defined as the differ-
ence between mean function values on samples generated from the distributions.
If MMD is large, the two distributions are likely to be distinct. On the other
hand, if MMD is small, the two distributions can be seen to be similar. Formally,
let π1 and π2 be two distributions whose the supports are subsets of Rd, and F
be a class of functions f : Rd → R. Usually, F is selected to be the unit ball in a
universal RKHS H. Then MMD is defined as

M(F ,π1,π2) = sup
f∈F

(Ex∼π1
[f(x)]− Ey∼π2

[f(y)]) .

From sample sets A1 = {a11, ...,a1n1
} and A2 = {a21, ...,a2n2

}, ati ∈ Rd, sampled
from the two distributions, MMD can be unbiasedly approximated using Gaussian
kernels k(·, ·) as follows [23, 12].

M(A1,A2) =
1

n1(n1 − 1)

∑
i,i′

k(a1i ,a
1
i′) +

1

n2(n2 − 1)

∑
j,j′

k(a2j ,a
2
j′)

− 2

n1n2

∑
i,j

k(a1i ,a
2
j )

(3)

When A1 and A2 are the embeddings of entities in two domains, MMD represents
a dissimilarity between the domains’ entity distributions.
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3 Problem Setting and Proposed Method

3.1 Problem Setting

The formal problem setting considered in this study is stated as follows. Given two
multi-relational graphs G1 and G2, each graph Gt is defined with a set of entities
(nodes) Et = {et1, ..., etnt

}, a set of predicates (types of links) Rt = {rt1, ..., rtmt
},

and a set of true facts (observed links) T t = {(eti, rtk, etj)} for t ∈ {1, 2}. For
simplicity, this study only considers the case where the two graphs share the same
set of predicates, i.e. R1 ≡ R2 ≡ R. The goal is to predict if an inter-domain
fact (e1i , rk, e

2
j ) or (e2i , rk, e

1
j ) holds true or not.

The entity embeddings of the two graphs are assumed to follow the same
distribution, i.e. there exists a distribution π such that ati ∼ π for embedding ati
of entity eti ∈ Et. In the experiments, the entity sets E1 and E2 are controlled so
that they are completely disjoint or partially overlapped with only a small amount
of common entities. The common entities are known in overlapping settings.

3.2 Proposed objective function

The proposed method’s objective function consists of two components. The first
component is for learning embedding representations of the entities and the
predicates of each multi-relational graph, which is based on an existing tensor-
factorization method. RESCAL [22] is specifically chosen in the proposed method.
The second component is a regularization term for enforcing the entity embedding
distributions of the two graphs to become similar.

For each graph Gt, lets denote the entity embeddings as At = [at1, ...,a
t
nt

]> ∈
Rnt×d, where d is the embedding dimension. If the entity sets E1 and E2 overlap,
the embeddings of common entities are set to be identical in both domains, i.e.
At = [A

′t,Ac]
> where Ac ∈ Rd×|E1∩E2| is the embeddings of common entities.

The embedding of predicate rk ∈ R is denoted as Rk ∈ Rd×d for k ∈ {1, ...,m}.
The objective function of the proposed method is given as

F (A1,A2,Rk, [P]) = L(A1,Rk) + L(A2,Rk) + αM(A1,A2, [P]). (4)

In (4), the first two terms L(At,Rk) are the loss functions of RESCAL and are de-
fined as in (1). The third term M(A1,A2, [P]) is the entropic-regularized Wasser-
stein distance (WD) or the MMD discrepancy between the entity distributions
of the two graphs. In the case of WD regularizer, M = M(A1,A2,P) is defined
as in (2) with P ∈ Rn1×n2

+ . In the case of MMD regularizer, M = M(A1,A2) is
defined as in (3).

Via L(At,Rk), the underlying embedding distribution over each entity set
Et is learned and characterized into At, while M(A1,A2, [P]) helps to drive
these two distributions to become similar. Through the objective function F ,
similar entities of G1 and G2 are expected to lie close to each other on the
latent embedding space, which encourages similar entities to involve in similar
relations/links. Specifically, if e1i ∈ E1 and e2i ∈ E2 have similar embeddings a1i
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and a2i , the inter-domain fact (e1i , rk, e
2
j ) is likely to exist if the intra-domain fact

(e2i , rk, e
2
j ) exists thanks to their similar scores a1i

>
Rka

2
j ≈ a2i

>
Rka

2
j .

The objective function F (A1,A2,Rk) (MMD regularizer) is directly optimized
with SGD. On the other hand, F (A1,A2,Rk,P) (WD regularizer) is minimized
iteratively. In each epoch, the transport plan P is fixed and the embedding
vectors A1 and A2 are updated with SGD. At the end of each epoch, A1 and
A2 are fixed and the plan P is sequentially updated via Sinkhorn algorithm [9].

4 Experiments

4.1 Datasets

The datasets used in the experiments are created from four popular knowl-
edge graph datasets, namely FB15k-237 [30], WN18RR [10], DBbook2014, and
ML1M [5]. The FB15k-237 dataset contains 272k facts about general knowl-
edge. It has 14k entities and 237 predicates. The WN18RR dataset consists of
86k facts about 11 lexical relations between 40k word senses. The other two
datasets represent interactions among users and items in e-commerce. The ML1M
(MovieLens-1M) dataset composes of 434k facts with 14k users/items and 20
relations, while the DBbook2014 has 334k facts with 13k users/items and 13
relations. To create G1 and G2 for each dataset, two smaller sub-graphs of
around 2k to 3k entities are randomly sampled from the original graph. The
two graphs are controlled to share some amounts of common entities. Different
levels of entity overlapping are investigated, from 0% (non-overlapping setting)
to around 1.5%, 3%, and 5% (overlapping setting). Moreover, different predicates
are removed so that G1 and G2 share the same predicate set, i.e. R1 ≡ R2 ≡ R.

Intra-domain triplets (ei, rk, ej) whose both entities ei, ej belong to the same
graph are used for training. Inter-domain triplets (ei, rk, ej) whose entities ei, ej
belong to different graphs are used for validating and testing inter-domain
performance. The validation and test ratio is 20 : 80. Even though the goal
is to evaluate a model’s ability to perform inter-domain link prediction, both
inter-domain and intra-domain link prediction performances are evaluated. This
is because the proposed method should improve inter-domain link prediction
while does not harm intra-domain link prediction. Therefore, 5% of intra-domain
triplets are further spared from the training data for monitoring intra-domain
performance.

The details for the case of 3% overlapping are shown in Table 1. In other
cases, the datasets share similar statistics.

4.2 Evaluation methods and Baselines

In the experiments, Hit@10 score and ROC-AUC score are used for quantifying
both inter-domain and intra-domain performances.
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Table 1. Details of the datasets in the case of 3% overlapping. The other cases share
similar statistics.

Datasets #Ent G1 #Ent G2 #Rel #Train #Inter Valid #Intra Test #Inter Test

FB15k-237 2675 2677 179 24.3k 4.3k 1.3k 17.7k

WN18RR 2804 2720 10 5.1k 105 148 1.1k

DBbook2014 2932 2893 11 34.6k 6.5k 1.8k 26.8k

ML1M 2764 2726 18 39.3k 6.5k 2k 27k

Evaluation with Hit@10. The Hit@10 score is computed by ranking true
entities based on their scores. For each true triplet (ei, rk, ej) in the test sets, one
entity ei (or ej) is hidden to create an unfinished triplet (·, rk, ej) (or (ei, rk, ·)).
All entities ecand are used as candidates for completing the unfinished triplet
and the scores of (ecand, rk, ej) (or (ei, rk, ecand)) are computed. Note that the
candidates ecand are taken from the same entity set as ei (or ej), i.e. if ei (or ej)
∈ Et then entities ecand are taken from Et. The ranking of ei (or ej) is computed
according to the scores. The higher “true” entities are ranked the better a model
is at predicting hidden true triplets. Hit@10 score is used for quantifying the
link prediction performance and is calculated as the percentage of “true” entities
being ranked inside the top 10.

Evaluation with ROC-AUC. In order to compute the ROC-AUC score,
triplets in the test set are treated as positive samples. An equal number of
triplets are uniformly sampled from the entity sets and the predicate set to create
negative samples. Due to the sparsity of each graph, it is safe to consider the
sampled triplets as negative. During the sampling process, both sampled entities
are controlled to belong to the same graph in the intra-domain case and belong
to different graphs in the inter-domain case.

Evaluated Models. In the experiments, RESCAL is used as the baseline
method. The proposed method with Wasserstein regularization is denoted as
WD while the one with MMD regularization is denoted as MMD.

4.3 Implementation details

Negative sampling. Only intra-domain negative triplets are used in order to
train the pairwise ranking loss (1) with SGD, i.e. negative triplet set D− only
contains negative triplets (el, rh, et) whose both entities belong to the same graph.

Warmstarting. Completely learning from scratch might be difficult since the
regularizer M can add noise at the early state. Instead, it is beneficial to warmstart
the proposed method’s embeddings with embeddings roughly learned by RESCAL.
Specifically, we run RESCAL for 100 epochs to learn initial embeddings. After
that, to maintain the fairness of equal training time, both the proposed method
and RESCAL are warmstarted with the roughly learned embeddings.
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Hyperparameters. In the implementation, the latent embedding dimension
is set to equal 100. All experiments are run for 300 epochs. Early stopping is
employed with a patience budget of 50 epochs. Other hyperparameters, namely α,
learning rate, and batch size, are tuned on the inter-domain validation set using
Optuna [1]. During the tuning process, α is sampled to be between 0.5 and 10.0,
while the learning rate and batch size are chosen from {0.01, 0.005, 0.001, 0.0005}
and {100, 300, 500, 700}, respectively. The hyperparameters of RESCAL is tuned
similarly with fixed α = 0.0. The kernel used in MMD is set to be a mixture of
Gaussian kernels with the bandwidth list of [0.25, 0.5, 1., 2., 4.] ∗ c where c is the
mean Euclidean distance between the entities. All results are averaged over 10
random runs1.

4.4 Experimental results

The experimental results are shown in Tables 2, 3, 4, and 5. Note that a random
predictor has a Hit@10 score of less than 0.004 and a ROC-AUC score of around
0.5.

Inter-domain link prediction. As being demonstrated in tables 2 and 3, the
proposed method with WD regularizer works well with the FB15k-237 dataset,
which outperforms RESCAL in all settings. Especially in the overlapping cases
where few entities are shared between the graphs, both Hit@10 and ROC-AUC
scores are improved significantly. The WD regularizer also demonstrates its
usefulness with the DBbook2014 and ML1M datasets. The Hit@10 scores are
boosted up in most cases of overlapping settings, while the ROC-AUC scores are
consistently enhanced over that of RESCAL. Most of the time, the improvements
are considerable. However, for the case of the ML1M dataset with 3% overlapping
entities, the WD regularizer causes the Hit@10 score to deteriorate, from 0.230 to
0.213. On the other hand, the MMD regularizer seems not to be beneficial for the
task. Unexpectedly, the regularizer introduces noise and reduces the accuracy of
inter-domain link prediction. In the case of the WN18RR dataset, both RESCAL
and the proposed method fail to perform, in which all Hit@10 and ROC-AUC
scores are close to random. This might be due to the extreme sparsity of the
dataset, whose amount of observed triplets is only about one-fifth of that of the
other datasets.

In all the four datasets, sharing some common entities, even with a small
number, is helpful and important for predicting inter-domain links. These common
entities act as anchors between the graphs, which guide the regularizer to learn
similar embedding distributions. Without common entities, the learning process
becomes more challenging and often results in uncertain predictors as being
shown in the 0% overlapping cases. The overlapping setting is reasonable because,
in practice, the two graphs often share some amounts of common entities, e.g.
the same users and the same popular items reappear in different e-commerce
platforms.

1 The code is available at https://github.com/phucdoitoan/inter-domain_lp
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Table 2. Inter-domain Hit@10 scores. Italic numbers indicate better results while
bold numbers and bold numbers with asterisk ∗ indicate better results at significance
level p = 0.1 and p = 0.05, respectively. The proposed method with WD regularizer
achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.110 ±0.038 0.027 ±0.003 0.087 ±0.058 0.062 ±0.074

MMD 0.111 ±0.038 0.031 ±0.004 0.085 ±0.057 0.063 ±0.072

WD 0.145 ±0.063 0.024 ±0.004 0.084 ±0.070 0.061 ±0.067

1.5%
RESCAL 0.251 ±0.031 0.025 ±0.002 0.107 ±0.035 0.210 ±0.034

MMD 0.237 ±0.043 0.026 ±0.003 0.109 ±0.037 0.180 ±0.067

WD 0.291 ±0.031
∗ 0.024 ±0.002 0.128 ±0.059 0.240 ±0.031

∗

3%
RESCAL 0.302 ±0.020 0.028 ±0.004 0.266 ±0.056 0.230 ±0.003

∗

MMD 0.292 ±0.020 0.026 ±0.004 0.227 ±0.081 0.228 ±0.002

WD 0.328 ±0.011
∗ 0.025 ±0.004 0.318 ±0.066

∗ 0.213 ±0.006

5%
RESCAL 0.339 ±0.007 0.027 ±0.005 0.389 ±0.032 0.237 ±0.011

MMD 0.334 ±0.006 0.026 ±0.004 0.388 ±0.027 0.236 ±0.010

WD 0.361 ±0.010
∗ 0.031 ±0.004 0.389 ±0.051 0.256 ±0.006

∗

Table 3. Inter-domain ROC-AUC scores. Italic numbers indicate better results
while bold numbers and bold numbers with asterisk ∗ indicate better results at sig-
nificance level p = 0.1 and p = 0.05, respectively. The proposed method with WD
regularizer achieves better scores in many settings.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.504 ±0.092 0.504 ±0.009 0.483 ±0.097 0.464 ±0.173

MMD 0.507 ±0.093 0.500 ±0.010 0.485 ±0.095 0.480 ±0.172

WD 0.548 ±0.118 0.505 ±0.009 0.488 ±0.099 0.495 ±0.179

1.5%
RESCAL 0.793 ±0.044 0.512 ±0.009 0.640 ±0.066 0.805 ±0.027

MMD 0.770 ±0.063 0.507 ±0.009 0.632 ±0.063 0.754 ±0.087

WD 0.837 ±0.033
∗ 0.510 ±0.007 0.671 ±0.087 0.842 ±0.017

∗

3%
RESCAL 0.825 ±0.022 0.503 ±0.009 0.762 ±0.032 0.832 ±0.006

MMD 0.813 ±0.030 0.498 ±0.011 0.714 ±0.060 0.831 ±0.007

WD 0.850 ±0.013
∗ 0.502 ±0.013 0.809 ±0.030

∗ 0.840 ±0.008

5%
RESCAL 0.870 ±0.008 0.498 ±0.021 0.824 ±0.012 0.845 ±0.007

MMD 0.875 ±0.007 0.498 ±0.012 0.823 ±0.015 0.845 ±0.006

WD 0.902 ±0.010
∗ 0.498 ±0.013 0.835 ±0.020 0.867 ±0.003

∗

Intra-domain link prediction. Even though the main goal is to predict inter-
domain links, it is preferable that the regularizers do not harm performance on
intra-domain link prediction when fusing the two domains’ entity distributions.
As being demonstrated in table 5, the proposed method is able to maintain
similar or better intra-domain ROC-AUC scores compared to RESCAL. However,
it sometimes requires trade-offs in terms of the Hit@10 score, which is shown in
table 4. Specifically, the WD regularizer worsens the intra-domain Hit@10 scores
compared to RESCAL in FB15k-237 with 5% overlapping and ML1M with 1.5%
overlapping settings despite helping improve the inter-domain counterparts. It
also hurts the intra-domain Hit@10 score in ML1M with 3% overlapping setting.

Summary. The proposed method with WD regularizer significantly improves the
performance of inter-domain link prediction over the baseline method while being
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Table 4. Intra-domain Hit@10 scores. Bold numbers with asterisk ∗ indicate better
results at significance level p = 0.05. Generally, the proposed method with WD regu-
larizer preserves the intra-domain Hit@10 scores despite requiring trade-offs in some
cases.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.451 ±0.031 0.418 ±0.031 0.468 ±0.011 0.302 ±0.076

MMD 0.461 ±0.029 0.342 ±0.086 0.449 ±0.012 0.307 ±0.070

WD 0.469 ±0.019 0.421 ±0.032 0.472 ±0.014 0.332 ±0.027

1.5%
RESCAL 0.433 ±0.008 0.390 ±0.040 0.296 ±0.039 0.425 ±0.006

∗

MMD 0.438 ±0.008 0.330 ±0.067 0.328 ±0.027 0.423 ±0.036

WD 0.427 ±0.009 0.408 ±0.035 0.291 ±0.038 0.412 ±0.008

3%
RESCAL 0.433 ±0.009 0.476 ±0.074 0.413 ±0.008 0.447 ±0.006

∗

MMD 0.447 ±0.011 0.485 ±0.074 0.411 ±0.017 0.444 ±0.008

WD 0.439 ±0.009 0.620 ±0.026
∗ 0.412 ±0.009 0.413 ±0.021

5%
RESCAL 0.433 ±0.009

∗ 0.455 ±0.038 0.418 ±0.010 0.408 ±0.005

MMD 0.421 ±0.009 0.416 ±0.058 0.420 ±0.014 0407 ±0.004

WD 0.413 ±0.007 0.479 ±0.076 0.412 ±0.022 0.401 ±0.005

Table 5. Intra-domain ROC-AUC scores. Bold numbers with asterisk ∗ indicate
better results at significance level p = 0.05. The propose method maintains similar or
better intra-domain ROC-AUC scores compared to RESCAL.

Overlapping Model FB15k-237 WN18RR DBbook2014 ML1M

0%
RESCAL 0.925 ±0.018 0.819 ±0.018 0.915 ±0.004 0.897 ±0.022

MMD 0.924 ±0.018 0.818 ±0.019 0.915 ±0.005 0.897 ±0.035

WD 0.928 ±0.006 0.811 ±0.017 0.918 ±0.005 0.932 ±0.004
∗

1.5%
RESCAL 0.929 ±0.003 0.814 ±0.018 0.871 ±0.032 0.950 ±0.003

MMD 0.931 ±0.003 0.807 ±0.029 0.892 ±0.009 0.954 ±0.003

WD 0.932 ±0.006 0.818 ±0.020 0.868 ±0.040 0.954 ±0.002

3%
RESCAL 0.922 ±0.006 0.870 ±0.018 0.885 ±0.008 0.946 ±0.005

MMD 0.926 ±0.005 0.861 ±0.011 0.877 ±0.026 0.948 ±0.003

WD 0.921 ±0.007 0.860 ±0.018 0.890 ±0.005 0.949 ±0.003

5%
RESCAL 0.927 ±0.007 0.869 ±0.007 0.878 ±0.008 0.949 ±0.003

MMD 0.935 ±0.005 0.835 ±0.050 0.879 ±0.008 0.952 ±0.003

WD 0.937 ±0.004
∗ 0.860 ±0.020 0.885 ±0.009

∗ 0.953 ±0.003

able to preserve the intra-domain performance in the FB15k-237 and DBbook2014
datasets. In the ML1M dataset, it benefits the inter-domain performance at
the risk of decreasing intra-domain Hit@10 scores. Unexpectedly, the MMD
regularizer does not work well and empirically causes deterioration of the inter-
domain performance. These negative results might be due to local optimal arising
when minimizing MMD with a finite number of samples, as recently studied
in [26]. Further detailed analysis would be necessary before one can firmly judge
the performance of the MMD regularizer. We leave this matter for future works.
It is also worth mentioning that, in the experiment setting, the sampling of G1

and G2 is repeated independently for each overlapping level. Therefore, it is
not necessary for the link prediction scores to monotonically increase when the
overlapping level increases.
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(a) Learned with RESCAL (b) Learned with RESCAL

(c) Learned with WD regularizer (d) Learned with WD regularizer

Fig. 1. Embedding visualization of FB15k-237 (subfigures a and c) and DBbook2014
(subfigures b and d) datasets with 3% overlapping. The proposed method learns more
identical embedding distributions across both domains.

Embedding visualization. Figures 1 and 2 visualize the entity embeddings
learned by RESCAL and the WD regularizer in the case of 3% overlapping. As
being seen in Figure 1, WD can learn more identical embedding distributions than
RESCAL in the case of the FB15k-237 and DBbook2014 datasets. Especially, in
the DBbook2014 dataset, RESCAL can only learn similar shape distributions,
but the regularizer can learn distributions with both similar shape and close
absolute position. However, as being shown in Figure 2, in the WN18RR and
ML1M datasets, the WD regularizer seems to only add noise when learning
the embeddings, which results in no improvement or even degradation of both
intra-domain and inter-domain Hit@10 scores.

5 Related Work

In recent years, the embedding-based approach has become popular in dealing
with the link prediction task on a multi-relational knowledge graph (intra-domain).
One of the pioneering works in this direction is TransE [3]. It is a translation
model whose each predicate type corresponds to a translation between the entities’
embedding vectors. The model is suitable for 1-to-1 relationships only. Following
models such as TransH, TransR, and TransD [33, 16, 14] are designed to deal
with n-to-1, 1-to-n, and n-to-n relationships. Furthermore, tensor-based models
such that RESCAL, DistMult, and SimplE [22, 35, 15] also gain huge interest.
They interpret multi-relational knowledge graphs as 3-D tensors and employ
tensor factorization to learn the entity and predicate embeddings. Besides, neural
network and complex vector-based models [27, 31] are also introduced in the
literature. Further details can be found in [20].
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(a) Learned with RESCAL (b) Learned with RESCAL

(c) Learned with WD regularizer (d) Learned with WD regularizer

Fig. 2. Embedding visualization of WN18RR (subfigures a and c) and ML1M (subfigures
b and d) datasets with 3% overlapping. RESCAL is able to learn similar embedding
distributions between the two domains while the proposed method seems to add more
noise.

To the best of our knowledge, the proposed method is the first to consider the
inter-domain link prediction problem between multi-relational graphs. Existing
methods in the literature do not directly deal with the problem. The closest line
of research focuses on entity alignment in multilingual knowledge graphs, which
often aims to match words of the same meanings between different languages.
The first work in this line of research is MTransE [8]. It employs TransE to
independently embed different knowledge graphs and perform matching on the
embedding spaces. Other methods like JAPE [28] and BootEA [29] further
improve MTransE by exploiting additional attributes or description information
and bootstrapping strategy. MRAEA [17] directly learns multilingual entity
embeddings by attending over the entities’ neighbors and their meta semantic
information. Other methods [4, 11] apply Graph Neural Networks for learning
alignment-oriented embeddings and achieve state-of-the-art results in many
datasets. All these entity-matching methods implicitly assume most entities in
one graph to have corresponding counterparts in the other graph, e.g. words in
one lingual graph to have the same meaning words in the other lingual graph.
Meanwhile, the proposed method only assumes the similarity between entity
distributions.

Minimizing a dissimilarity criterion between distributions is a popular strategy
for distribution matching and entity alignment problems. Cao et al. propose
Distribution Matching Machines [6] that optimizes maximum mean discrepancy
(MMD) between source and target domains for unsupervised domain adaptation
tasks. The criterion is successfully applied in distribution matching and domain
confusion tasks as well [2, 32]. Besides Wasserstein distance (WD), Gromov-
Wasserstein distance (GWD) [24] also is a popular optimal transport metric. It
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measures the topological dissimilarity between distributions lying on different
domains. GWD often requires much heavier computation than WD due to
nested loops of Sinkhorn algorithm in current implementations [24]. Applying
optimal transport into the graph matching problem, Xu et al. propose Gromov-
Wasserstein Learning framework [34] for learning node embedding and node
alignment simultaneously, and achieve state of the art in various graph matching
datasets. Chen et al. [7] propose Graph Optimal Transport framework that
combines both WD and GWD for entity alignment. The framework is shown to
be effective in many tasks such as image-text retrieval, visual question answering,
text generation, and machine translation. Due to the computational complexity of
GWD, each domain considered in [34, 7] only contains less than several hundred
entities. Phuc et al. [25] propose to apply WD to solve the link prediction problem
on two graphs simultaneously. In terms of technical idea, the method is the most
similar to the proposed method; however, it only focuses on the intra-domain
link prediction problem on undirected homogeneous graphs and requires most of
the nodes in one graph to have corresponding counterparts in the other graph.

6 Conclusion and Future Work

Inter-domain link prediction is an important task for constructing large multi-
relational graphs from smaller related ones. However, existing methods in the
literature do not directly address this problem. In this paper, we propose a new
approach for the problem via jointly minimizing a divergence between entity
distributions during the embedding learning process. Two regularizers have been
investigated, in which the WD-based regularizer shows promising results and
improves inter-domain link prediction performance considerably. For future works,
we would like to verify the proposed method’s effectiveness using more baseline
embedding methods besides RESCAL. Further analysis on the performance of
the MMD-based regularizer will also be conducted. Moreover, the proposed
method currently assumes that both domains share the same underlying entity
distribution. This assumption is violated when the domains’ entity distributions
are not completely identical but partially different. One possible direction for
further research is to adopt unbalanced optimal transport as the regularizer,
which flexibly allows mass destruction and mass creation between distributions.
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