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Abstract—Link prediction is an extensively studied topic and
various methods have been proposed to tackle the task in both
heuristic and more sophisticated statistical learning approaches.
However, most of them focus on the setting of one single graph.
Combining information on multiple graphs with similar topo-
logical structures can improve the performance and robustness
of link prediction; nevertheless, the alignment between nodes of
different networks is not always available, or is only partially
known. This study considers the link prediction problem on
two unaligned networks simultaneously. A new framework is
proposed to integrate link prediction using graph embedding and
node alignment using optimal transport. The integrated objective
is optimized at once via an iterative algorithm. A showcase of the
proposed framework using LINE embedding method is discussed
with experiments on three real datasets. The results demonstrate
that the integrated formulation shows better link prediction
performance over single-graph link prediction methods as well
as existing methods that do not directly aim at link prediction.
The framework is flexible and theoretically able to integrate with
different graph embedding methods, which is demonstrated in
additional experiments using node2vec.

Index Terms—Link prediction, Optimal transport, Graph em-
bedding

I. INTRODUCTION

Graph is a general and ubiquitous data structure that plays
a crucial role in various aspects of the world. Since it was first
introduced in the 18th century, graph has been an important
subject in many research fields. By representing relationships
between entities with nodes and links among them, graph is
useful to model complex systems of interactive elements. For
example, in a social network, a user account can be seen as a
node and the friendship between two users can be seen as a
link. In a protein-protein interaction network, each node in the
network represents a protein and two proteins are linked if they
interact with each other. In many real world scenarios, complex
networks are only partially observed, i.e. have missing or
hidden links. Social network users who know each other in
real life might have not been connected in a social network
platform yet. In medical and biological studies, interaction
graphs are incomplete because they rely only on expensive lab
experiment data. Re-establishing such hidden friendships and
possible biological interactions undoubtedly derives tremen-

dous benefits in both academic and industrial settings. In the
machine learning context, the task of re-discovering those
potential relationships is called link prediction.

Like other tasks on graph-structure data, the link prediction
task is often challenging due to the difficulty of extracting
necessary information from graphs. Traditional approaches for
link prediction are often based on heuristic similarity scores
over pairs of unconnected nodes such as the Common Neigh-
bor index [1], the Adamic-Adar index [2], and the Jaccard
similarity index [3], [4]. These heuristic scores are computa-
tionally fast and shown to be effective in capturing the local
similarity in social networks [3]. Besides such unsupervised
approaches, there have been proposed various supervised [5],
[6] and semi-supervised [7], [8] link prediction methods.
Other methods apply Matrix factorization to decompose the
adjacency matrix of a graph into low-rank matrices [9], [10].
Menon et al. [11] solve the link prediction task as a matrix
completion problem using non-negative matrix factorization
methods. With the recent advances in deep neural networks
and natural language processing [12], graph embedding ap-
proaches have shown favorable results on the link prediction
task. The basic idea behind the graph embedding approaches is
to represent each node as a vector in a low-dimensional latent
vector space so that the similarity of nodes in the original
graph is preserved as the vector proximity in the latent space.
Some of the most prominent methods on this approach are
LINE [13], Deepwalk [14], and node2vec [15].

The researches on link prediction problem are profound.
However, existing works are specialized to only deal with
a single graph. In real world scenarios, it is not rare that
multiple graph data from related domains co-exist. An example
can be a Facebook network and a Twitter network that share
many common users. It is reasonable to think that if there
exists a link between a pair of users in one network, there
likely also exists a link between the corresponding pair in the
other network. Naturally, by sharing link information across
related graphs, the link prediction on each individual graph
can be greatly improved. The ideal scenario for propagating
link information across graphs is when a complete alignment
between corresponding nodes is available; e.g., it is clear that



which user in the Facebook network corresponds to which user
in the Twitter network. However, such alignment is not always
available, or is only partially known. Finding a reasonable
alignment is not easy, making link prediction on multiple
unaligned graphs a challenging task.

This paper aims to address the link prediction problem
on two unaligned graphs via an integrated optimization for
learning graph embedding and node alignment at once. The
objective is to improve the link prediction performance on
each individual graph. Our contribution is to propose a novel
framework that allows link information sharing across graphs
by combining two recently successful ideas: network embed-
ding and optimal transport. On the one hand, an existing
network embedding method such as LINE method [13] is
employed to capture link information in each graph. The nodes
in each graph will be mapped with latent embedding vectors
in low-dimensional space such that the latent vectors of two
nodes will stay close in the embedding space if the nodes
are linked or similar. On the other hand, link information
is propagated across the two graphs by making the latent
vectors of corresponding nodes become closer. This process
is under the guidance of optimal transport who provides a
reasonable alignment in the form of an optimal transport plan
between the node sets. Although the embedding process is
based on existing network embedding methods, the proposed
framework is more desirable thanks to its ability to propa-
gate link information. Instead of being learned independently,
the embedding processes of both graphs are correlated and
complement each other. An iterative algorithm is designed
to optimize the proposed framework in a single optimization
problem, which converges to a local optimal solution.

There are a few studies addressing the link prediction
problem in unaligned graphs. Xu et al. [16] give another
formulation of embedding of unaligned networks using the
Gromov-Wasserstein distance, which is the most technically
related work, but their embedding aims at preserving the
distances between the nodes on each graph and does not
focus on preserving link structure. Du et al. [17] consider the
most similar problem setting, but their focus is rather on node
alignment, and not much optimized for link prediction.

Experiments are conducted on multiple datasets with dif-
ferent numbers of nodes and levels of density. The proposed
method and baselines are compared with different values for
the size of the training data (i.e., the number of known
links) and the number of common nodes between the graphs.
Empirically, the proposed method works best with graphs of
high variance degree distributions, where the node degrees are
diverse and indicate different levels of importance of the nodes
in the graphs.

The remainder of this paper is organized as follows. The
problem setting and notation are defined in section II. Section
III focuses on the proposed method, presenting the graph em-
bedding method and optimal transport approximation method
employed in the framework. The effectiveness of the proposed
method is demonstrated in section IV with experiments on
multiple datasets. Section V reviews related work. Finally,

TABLE I
SUMMARY OF THE SYMBOLS AND NOTATIONS

G(k) one of the unaligned graphs (k ∈ {1, 2})
V (k) the set of nodes in graph G(k)

E(k) the set of links in graph G(k)

W (k) the weight matrix corresponding to E(k)

n(k) the number of nodes in V (k)

v
(k)
i a node in V (k)

w
(k)
ij the link weight between v

(k)
i and v

(k)
j

d the embedding dimension
x
(k)
i the embedding vector of node v

(k)
i

X(k) the embedding matrix with columns of x(k)
i

x′(k)

i the “context” embedding vector of node v
(k)
i

X′(k)
the “context” embedding matrix with columns of x′(k)

i
p(k) a probability distribution over V (k)

P a transport plan between p(1) and p(2)

Cij the transporting cost between nodes v
(1)
i and v

(2)
j

d
(k)
i the node weight of v(k)i

concluding remarks and a discussion of future work are
presented in section VI.

II. PROBLEM SETTING

In this paper, the setting of simultaneous link predic-
tion problem on unaligned graphs considers two undirected,
weighted graphs G(1) = (V (1), E(1),W (1)) and G(2) =
(V (2), E(2),W (2)), where each graph G(k) (k ∈ {1, 2}) has
the set of nodes V (k) = {v(k)i | i ∈ {1, . . . , n(k)}} and the set
of links E(k), and W (k) = (w

(k)
ij ) ∈ Rn(k)×n(k)

is the weight
matrix each of whose element w(k)

ij represents the link weight
between v(k)i and v(k)j . The weight w(k)

ij > 0 if v(k)i and v(k)j

are connected, and w(k)
ij = 0 otherwise.

The two graphs are assumed to share similar topological
structures so that cross-graph link information can be exploited
effectively; more precisely, it is assumed that some of the
nodes in V (1) have their respective corresponding nodes
in V (2) referring to the same entities, and vice versa. For
example, G(1) and G(2) can be the Facebook and Twitter
account networks that share many common users; however,
the correspondences between the common users are unknown.

The goal is to find hidden (i.e., existing, but unobserved)
links in each of the two graphs. The input and output of the
proposed framework are summarized as follows:
• Input: two undirected, weighted graphs G(1) =

(V (1), E(1),W (1)) and G(2) = (V (2), E(2),W (2)) that
have n(1) nodes and n(2) nodes, respectively.

• Output: predicted hidden links Ê(1) ⊆ V (1)×V (1)−E(1)

and Ê(2) ⊆ V (2) × V (2) − E(2).
This study focuses on the embedding approach

that maps the nodes of the two graphs into a d-
dimensional vector space. Therefore, the embedding
vectors X(1) = [x

(1)
1 ,x

(1)
2 , . . . ,x

(1)

n(1) ] ∈ Rd×n(1)

and
X(2) = [x

(2)
1 ,x

(2)
2 , . . . ,x

(2)

n(2) ] ∈ Rd×n(2)

of the two graphs



are also obtained as the byproducts, where the embedding
vector of node v(k)i is denoted by x

(k)
i ∈ Rd. The embedding

vectors are used for link prediction based on similarity scores
between the embeddings. Normally, the closer two nodes’
embeddings are, the more likely a link between them exists.

For clarity, the symbols and notations used in the paper are
summarized in Table I.

III. PROPOSED METHOD

The proposed framework is built upon two components:
graph embedding for link prediction in each graph and optimal
transport for unsupervised node alignment between the two
graphs. This section starts with brief reviews of the graph
embedding and the optimal transport methods employed in
the framework, and then introduces an integrated objective
formulation as well as its optimization algorithm.

A. Link Prediction Using Graph Embedding

In order to embed each of the two given graphs, the LINE
embedding method [13] is specifically employed as it is one
of the most popular and highly successful graph embedding
methods.

Given an undirected and weighted graph G = (V,E,W ),
LINE aims to preserve the first-order proximity and the
second-order proximity of a graph.

The first-order proximity refers to the direct connections
among the nodes given as the links and their weights. LINE
defines the first-order proximity between nodes vi and vj as:

p(vi, vj) = σ(x>i xj) =
1

1 + exp(−x>i xj)
,

where σ is the sigmoid function. The objective function L to
be minimized is defined as the KL-divergence between p(·, ·)
and the empirical distribution p̂(vi, vj) =

wij∑
(i,j) wij

, which
results in:

L(X) = −
∑

(vi,vj)∈E

wij log p(vi, vj). (1)

The second-order proximity refers to the similarity of the
neighborhoods of two nodes. To quantify the second-order
proximity, LINE introduces the “context” embedding x′i of
each node vi in addition to the original node embedding xi.
The conditional probability of the “context” node vj given
node vi is defined by LINE as:

p(vj |vi) =
exp(x′>j xi)∑|V |
k=1 exp(x

′>
k xi)

.

To obtain the embedding for the second-order proximity, LINE
optimizes the following objective function:

L(X,X′) = −
∑

(vi,vj)∈E

wij log p(vj |vi). (2)

Since it requires huge computational costs to solve the
optimization problems for the two proximity variants, the
authors of LINE propose to use sampling approximation and

the stochastic gradient descent. Please refer to the original
paper [13] for more details about the LINE method.

Note that, although the proposed framework stands on the
LINE embedding method in this paper, most of the other
embedding methods can also be used as far as they focus
on preserving the link structure in a graph.

B. Node Alignment Using Optimal Transport

In the proposed framework, optimal transport is used to
address the problem of node alignment between two graphs.
Conceptually, given two “piles of dirt” of a same volume,
optimal transport aims to find an optimal transport plan that
moves the dirt from one pile to another with the minimum
transportation cost. In the machine learning context, optimal
transport is a powerful and essential tool for comparing
probability distributions.

Given two probability distributions p(1) ∈ Rn(1)

+ and
p(2) ∈ Rn(2)

+ that satisfy p(1)>1n(1) = p(2)>1n(2) = 1,
P ∈ Rn

(1)×n(2)

+ is called a transport plan between p(1) and
p(2) if P1n(2) = p(1) and P>1n(1) = p(2). Here, 1n indicates
an n-dimensional vector of ones. For a predefined cost matrix
C ∈ Rn

(1)×n(2)

+ , the transport cost of a transport plan P is
defined as 〈P,C〉 =

∑
i,j PijCij . A transport plan P that

gives the minimum transport cost is an optimal transport. The
optimal transport plan P gives a reasonable “soft” matching
between the indices of p(1) and p(2). Specifically, an index i
of vector p(1) can be seen to be matched with a target index
j of vector p(2) with a probability proportional to Pij .

Therefore, a “soft” node alignment between the nodes
of two unaligned graphs can be computed via the optimal
transport plan. Given the embedding vectors of two graphs,
X(1) = [x

(1)
1 ,x

(1)
2 , . . . ,x

(1)

n(1) ] ∈ Rd×n(1)

and X(2) =

[x
(2)
1 ,x

(2)
2 , . . . ,x

(2)

n(2) ] ∈ Rd×n(2)

, we define the cost matrix C
using the Euclidean distance between the embedding vectors.
Specifically, we use

Cij = ‖x(1)
i − x(2)

j ‖2
for first-order LINE embeddings, and

Cij = ‖x(1)i − x(2)j ‖2 + ‖x
′(1)
i − x′

(2)

j ‖2
for the second-order LINE embeddings, where ‖·‖2 denotes
the L2-norm.

The computational cost for computing optimal transport
plan is often prohibitive. Cuturi [18] has proposed an efficient
solution for computing an entropic-regularized approximation
of the optimal transport. Instead of the exactly optimal trans-
port P ∗ = argmin

P
〈P,C〉, they add an entropic regularization

into the cost and minimize the entropic-regularized transporta-
tion cost M defined as follows:

M(P ) = 〈P,C〉+ 1

λ

∑
i,j

Pij logPij , (3)

where λ > 0 is a hyperparameter and the second term is
the negative entropy of matrix P . With a large enough λ,
empirically when λ exceeds 50, P ∗ can be approximated by



the entropic-regularized solution Pλ with high accuracy. Pλ

is unique and has the following form:

Pλ = diag(u)Kdiag(v),

where diag(u) indicates a diagonal matrix with the elements
of u as the diagonal elements. The K = e−λC is the element-
wise exponential of −λC. The vectors u and v are updated
using

(u, v)←
(

p(1)

Kv
,

p(2)

K>u

)
,

where the division is element-wise.

C. Link Prediction on Unaligned Networks
The proposed framework integrates both node embedding

and node alignment processes into one single objective func-
tion as:

F (X(1),X(2), P ) = L(X(1))+L(X(2))+αM(X(1),X(2), P ),
(4)

where α > 0 is a hyperparameter to balance link prediction
and node alignment.

The first two terms L(X(1)) and L(X(2)) are the loss
functions for embedding the two graphs, which are chosen
from the ones for the first-order LINE (1), the second-order
LINE (2), or others. The third term M is the optimal transport
cost (3) for node alignment. Note that the transport cost matrix
C depends on the node embeddings X(1) and X(2) to be also
optimized in the integrated formulation.

As shown in Figure 1, our optimization procedure consists
of two steps: optimization of the embedding vectors X(1) and
X(2) (and also X′

(1) and X′
(2) when the second-order LINE is

used) and the optimal transport plan P . The embedding vectors
are updated when fixing the optimal transport plan, and the
optimal transport plan is updated when fixing the embedding
vectors; these two steps are iteratively applied.

In the former step, stochastic gradient descent is used to
update the embedding vectors through sampling mini-batches
of links from the two graphs. The objective functions for the
embedding vectors reflect the topological structure of the two
graphs, while under the supervision of the optimal transport
plan P , the embedding vectors of nodes v(1)i and v(2)j across
the two graphs are also “pulled” closer to each other according
to their “soft” matching probability Pij .

In the latter step, the optimal transport plan P is sequentially
updated based on the new transport cost matrix calculated from
the updated embedding vectors. The Sinkhorn algorithm [18]
is used. One should keep in mind that in order to calculate
P , it is necessary to assign probability distributions p(1) and
p(2) over the node sets V (1) and V (2). The parametric forms
of p(1) and p(2) are specifically set as

p
(k)
i =

(d
(k)
i )r∑

j(d
(k)
j )r

,

where the node weight d(k)i of node v(k)i is defined as the total
weights of the links connected to v(k)i , and r is a hyperparam-
eter. The two steps are performed iteratively together until a

Algorithm 1: Embedding learning for two unaligned
graphs

Input: G(1) = (V (1), E(1),W (1)),
G(2) = (V (2), E(2),W (2)), d

1 n(1), n(2) = |V (1)|, |V (2)|
2 Initialize p(1) ∈ Rn(1)

+ , p(2) ∈ Rn(2)

+

3 P = 0 ∈ Rn(1)×n(2)

4 Initialize X(k) ∈ Rn(k)×d (and X(k)′ ∈ Rn(k)×d for
LINE-2nd), k ∈ {1, 2}

5 for i = 0, 1, . . . do
6 for j = 0, 1, . . . do
7 Minimize objective function F in (4) w.r.t X(k)

(and X(k)′) using SGD
8 end
9 Update P using the Sinkhorn algorithm

10 end
Output: X(1), X(2)

stopping criterion is met. The whole optimization process is
summarized in Algorithm 1.

After the final embedding vectors are obtained, they are used
for making link prediction. For two unconnected nodes v(k)i

and v(k)j in graph G(k), the link prediction score is defined as

the cosine similarity
〈x(k)

i ,x(k)
j 〉

‖x(k)
i ‖2·‖x

(k)
j ‖2

.

IV. EXPERIMENTS

A. Datasets

Experiments are conducted on three real datasets to inves-
tigate the performance of the proposed method.

1) Small-facebook: This dataset is a small potion extracted
from Facebook network dataset1 in Stanford Large Network
Dataset Collection. A sub-network of the original dataset with
532 nodes is used and denoted as the Small-facebook network
for convenience. The network contains 4, 812 links with an
average node degree of approximately 18. Its node degree
distribution is right-skewed and has a large deviation, which
indicates a large diversity of the node degrees.

2) Facebook-Twitter: This dataset is used by Du et al. [17]
and is constructed from the real-world Facebook and Twitter
social networks that are collected and published in ASNETS
dataset2. It represents the relationship of 1, 043 users on the
two platforms; the Facebook network and the Twitter network
have 4, 734 links and 4, 860 links, respectively. Both networks
have average node degrees of approximately 9 and are sparser
than the Small-facebook network. The two networks have
fairly balanced node degree distributions with small deviations,
which indicates that most of the nodes have similar node
degrees.

1https://snap.stanford.edu/data/ego-Facebook.html.
2http://apex.sjtu.edu.cn/datasets/12.
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Fig. 1. The proposed method embeds two unaligned graphs into a common embedding space Rd, where the embedding vectors correspond to the nodes
of the original graphs. In the embedding space, optimal transport is used for seeking the most reasonable node alignment. The embedding vectors and the
optimal transport plan are learned jointly in the proposed formulation.

3) MC3 Communication network: This dataset is extracted
from a large dataset used in Mini-Challenge 3 of VAST
Challenge 20183, which contains phone call and email com-
munication information of employees in a company. A subset
of 500 employees is considered in this experiment4. Following
Xu et al. [16], the links are filtered based on their weights by
removing links with weights of 8 or smaller. This results in
two networks of 6, 569 links and 9, 953 links. For convenience,
they are denoted the Calls network and the Emails network,
respectively. The Calls network has an average node degree
of 26.3 and the Emails network has an average node degree
of 39.8. Both networks are considerably denser than those
of the previous datasets. The node degree distributions have
very large deviations, which reveals that both networks have
varying node degrees with several nodes of extremely big
degrees.

A summary of the property of the datasets is presented in
Table II.

B. Experimental Setup

Two scenarios are set up for the experiments, where the link
prediction performance is investigated when changing the size
of the training data as well as when reducing the number of
common nodes between the networks.

In the first scenario, the observed links of each network are
divided into training data, validation data, and testing data.
Three configurations for the training data’s size of 30%, 50%,
and 70% are tested. In the validation and testing phrases,
the observed links are treated as positive samples. The same
number of pairs of unconnected nodes are randomly sampled
and treated as negative samples. The embeddings are tested
on the validation data after every outer iteration in Algorithm
1. The embeddings with the best validation AUC are used
for evaluation on the testing data. The whole learning process

3http://vacommunity.org/VAST+Challenge+2018+MC3.
4A different subset of 622 employees also is used in [16].

(model training, validation, and testing) is repeated 5 times for
measuring the final average AUC score.

In the second scenario, the models’ performances are ob-
served against the number of common nodes between the
two graphs. To control the percentage of common nodes,
a half number of nodes are randomly selected from each
original graph so that the node-overlapped percentage is in
{100%, 75%, 50%, 25%, 0%}. The new pairs of graphs G1 and
G2 are induced as subgraphs on the selected node sets. The
AUC scores are then calculated as described above with the
training data’s size of 50%.

In the case of the Small-facebook dataset, the Small-
facebook network is treated as both G1 and G2. For the
Facebook-Twitter dataset, the Facebook network is treated as
G1 while the Twitter network is treated as G2. For the MC3
dataset, the Calls network is treated as G1 and the Emails
network is treated as G2.

1) Proposed method: LINE is employed as the base embed-
ding method5. In Algorithm 1, the number of inner iteration
is fixed to 100. The values of hyperparameters r and α are
learned using the validation data with the grid search over
r ∈ {0.75, 1, 1.5, 3, 5} and α ∈ {5, 10, 15, 20}. For each
learned value of α, the proposed model is also evaluated with
r = 0.0 (a uniform distribution). Embedding dimension d is
set to 64 and the mini-batch size is set to 32. As suggested
in [13], the number of the “negative” nodes K is 5, and the
initial learning rate is set to 0.025. The number of the outer
iterations in Algorithm 1 is set to 500 for the Facebook-Twitter
dataset and to 100 for the other two datasets.

2) Baseline methods: For comparing the performance of
the proposed model, LINE with the first-order and the second-
order proximity are employed as baseline methods. Gromov-
Wasserstein Learning with cosine distance (GWL-C) [16] is
also compared.

5Our implementation for the LINE model partially refers to the codes at
https://github.com/snowkylin/line.



TABLE II
SUMMARY OF THE DATASET PROPERTIES

Dataset #nodes #links Type
Small-facebook 532 4812 unweighted

Facebook-Twitter Facebook network 1043 4734 unweighted
Twitter network 1043 4860 unweighted

MC3 Calls network 500 6569 weighted
Emails network 500 9953 weighted

The performance of LINE is evaluated by simply setting
α = 0 in the proposed model. For GWL-C, the implementation
provided at the authors’ github6 is used. Since the performance
of GWL-C on the link prediction task seems to improve when
being trained with more epochs, the training epoch number
is set to 250. The other hyperparameters are kept unchanged
from the default values.

C. Results

1) Convergence of Training loss and Sinkhorn distance:
As shown in Figures 2 and 3, the total loss F of the proposed
model and the Sinkhorn distance M between distributions over
the node sets of the Small-facebook and Facebook-Twitter
datasets gradually decrease and converge. The convergence
could be foreseeable; when the model is trained, the base
embedding method (LINE) is expected to capture the structure
of each graph and the embedding vectors of corresponding
nodes between the two graphs are expected to come closer due
to the influence of optimal transport. Therefore, the embedding
loss L(X(k)) and the optimal transportation cost (the Sinkhorn
distance) M are projected to reduce. The loss and the Sinkhorn
distance of the MC3 dataset converge quickly and behave
similarly to that of Figure 2; therefore, we exclude them for
the sake of presentation.

2) Link prediction with different sizes of the training data:
Tables III, IV, and V show the link prediction accuracy by
different methods in terms of AUC. The proposed method with
the first-order LINE (LINE-1st) and the second-order LINE
(LINE-2nd) are denoted as Proposed-1st and Proposed-2nd,
respectively.

In the small-facebook dataset, the proposed method shows
a considerable improvement over the base LINE method. For
the first-order proximity, the Proposed-1st method significantly
outperforms LINE-1st even when the node distributions are
set to uniform (r = 0.0). The AUCs further improve when the
node weight information is integrated (r > 0.0) to enhance
node alignment with optimal transport. For the second-order
proximity, the improvement is milder. The AUCs of Proposed-
2nd slightly drops for r = 0.0, but increase and improve over
those of LINE-2nd when the node weight is considered. As
expected, when the amount of training data increase, the per-
formance of both LINE and the proposed model increases as
well, in which the proposed model consistently improves over
the LINE method. One factor contributing to the performance
of the proposed method is the diversity of the node degrees of

6https://github.com/HongtengXu/gwl.

the dataset. Important nodes with large degrees (equivalently,
large node weights) are filtered out by being assigned with
large probabilities in p(k) (for r > 0.0), which is beneficial
for optimal transport in aligning corresponding nodes. GWL-
C performs worse than both LINE and the proposed method
in this dataset.

In the Facebook-Twitter dataset, the proposed method gives
better AUCs than LINE for the first-order proximity. For the
second-order, the proposed method does not provide much
benefit as the AUCs stay almost the same for all the con-
figurations. In this dataset, the structures of both graphs might
not be captured well enough by LINE, because the dataset
is substantially sparser than the Small-facebook dataset and
LINE is known to struggle with sparse graphs. Besides, the
nodes of the Facebook and Twitter graphs have a similar node
degree, which provides limited information for optimal trans-
port in aligning corresponding nodes. These combined factors
contribute to the reasons why the proposed method does not
clearly improve over the LINE method. As demonstrated in
Figure 3, the convergence of the Sinkhorn distance is slow
and might solely be due to the fact that the embedding vectors
become closer during the training rather than a reasonable
matching P between the nodes has been learned. GWL-C still
under-performs in this dataset.

In the MC3 dataset, the LINE-1st and Proposed-1st methods
with the first-order proximity are not able to capture the
structures of the networks. The learned embeddings only
give the AUCs between 0.4 and 0.5, which is close to that
of random embeddings. the GWL-C method performs really
well and outperforms the other methods with big margins.
Nevertheless, the Proposed-2nd method shows a significant
improvement over the base LINE-2nd method. Its AUCs
slightly reduce compared to that of LINE-2nd for r = 0.0,
but significantly increase for r > 0.0. Similar to the Small-
facebook dataset, the MC3 dataset has degree distributions of
large deviations, which highly benefits optimal transport in
aligning corresponding nodes. Strangely, when the amount of
training data increases, the AUC scores of the LINE-2nd and
Proposed-2nd methods do not increase but slightly decrease.

3) Link prediction with different percentages of common
nodes: As demonstrated in Figure 4, it is interesting to see
that the performance does not degrade when the amount of
overlapping node is small, especially even when there is no
node overlapping. It can be explained that even when there is
no “real” matching (common nodes) between the two graphs,
if the topological structures of G1 and G2 are similar, it
is still reasonable to consider alignment between nodes of
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Fig. 2. The total loss and the Sinkhorn distance by the proposed method converge quickly after several outer iterations for the Small-facebook dataset. Here,
the total loss is calculated when the model is trained with mini-batches, while the Sinkhorn distance is computed between the whole node sets of the graphs.
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Fig. 3. For the Facebook-Twitter dataset, the convergence speed is slower. The total loss and the Sinkhorn distance slowly decrease and start to converge
after around 400 outer iterations.

TABLE III
ROC-AUC SCORES OF THE SMALL-FACEBOOK DATASET

In all configurations for the size of the training data, the proposed method significantly improves the ROC-AUC scores for both orders of LINE, especially
for the case of the first order. The proposed method also outperforms GWL-C in this dataset.

Train Graphs LINE Proposed-1st LINE Proposed-2nd GWL-C(1st) r = 0.0 r > 0.0 (2nd) r = 0.0 r > 0.0

30% G1 0.6609
±0.0051

0.6714
±0.0064

0.7052
±0.0102

0.6936
±0.0106

0.6665
±0.0069

0.7187
±0.0087

0.6892
±0.0009

G2 0.6719
±0.0109

0.6708
±0.0090

0.7094
±0.0036

0.6994
±0.0068

0.6629
±0.0035

0.7126
±0.0028

0.7024
±0.0013

50% G1 0.7354
±0.0070

0.7508
±0.0073

0.8033
±0.0119

0.7907
±0.0072

0.7565
±0.0040

0.8332
±0.0070

0.7194
±0.0019

G2 0.7359
±0.0019

0.7594
±0.0029

0.8010
±0.0071

0.8018
±0.0036

0.7697
±0.0098

0.8202
±0.0110

0.7205
±0.0003

70% G1 0.7752
±0.0085

0.8084
±0.0070

0.8584
±0.0085

0.8515
±0.0071

0.8207
±0.0030

0.8775
±0.0066

0.7608
±0.0020

G2 0.7726
±0.0067

0.8034
±0.0121

0.8420
±0.0067

0.8518
±0.0041

0.8219
±0.0077

0.8594
±0.0070

0.7452
±0.0015

similar local neighborhood. Overall, the AUC scores remain
almost the same for different values of the common node
percentage. Similar to the results shown in the previous tables,
the proposed method significantly improves over the LINE
method and achieves the highest AUC scores for the Small-
facebook dataset and the second-highest AUC scores for the
MC3 dataset. However, for the second order in the Small-
facebook dataset, only G1 benefits from the proposed method
while the AUC scores of G2 remains the same as that of the
LINE-2nd method. In the case of the Facebook-Twitter dataset,

consistent improvement is observed for the first order.

Throughout the three datasets, the proposed method con-
sistently shows advantages over the base LINE method. The
considerable increase in performance when the node weight
is considered firmly verifies the benefit of node alignment by
optimal transport in the learning process. Nevertheless, one
major issue of the proposed method is that when the base
embedding method fails to capture the topological structures
of graphs, the proposed method also fails to perform. This
is depicted in the first-order proximity in the MC3 dataset.



TABLE IV
ROC-AUC SCORES OF THE FACEBOOK-TWITTER DATASET

For the Facebook-Twitter dataset, a mild improvement of the ROC-AUC scores by the proposed model is observed for the first order. However, the
ROC-AUC scores remain similar in the case of the second order. GWL-C still underperforms in this dataset.

Train Graphs LINE Proposed-1st LINE Proposed-2nd GWL-C(1st) r = 0.0 r > 0.0 (2nd) r = 0.0 r > 0.0

30% G1 0.5947
±0.0156

0.5982
±0.0068

0.6022
±0.0051

0.5665
±0.0035

0.5609
±0.0064

0.5577
±0.0060

0.5527
±0.0034

G2 0.6111
±0.0080

0.6192
±0.0119

0.6212
±0.0040

0.5731
±0.0050

0.5741
±0.0056

0.5620
±0.0088

0.5458
±0.0013

50% G1 0.6817
±0.0057

0.6846
±0.0082

0.6901
±0.0057

0.6397
±0.0043

0.6404
±0.0065

0.6471
±0.0059

0.5849
±0.0024

G2 0.6709
±0.0022

0.6833
±0.0045

0.6793
±0.0103

0.6332
±0.0098

0.6347
±0.0096

0.6336
±0.0052

0.5769
±0.0017

70% G1 0.7266
±0.0069

0.7389
±0.0105

0.7371
±0.0107

0.6937
±0.0081

0.6894
±0.0079

0.6891
±0.0123

0.6141
±0.0030

G2 0.7219
±0.0056

0.7315
±0.0105

0.7296
±0.0129

0.6906
±0.0051

0.6878
±0.0115

0.6796
±0.0080

0.6058
±0.0026

TABLE V
ROC-AUC SCORES OF THE MC3 DATASET

For the MC3 dataset, GWL-C outperforms all the others including the proposed methods with large margins. However, a significant improvement of
ROC-AUC scores by the proposed method is observed in the case of the second order. For the first order, LINE fails to capture the graphs’ structures, which

results in the failure of the proposed method.

Train Graphs LINE Proposed-1st LINE Proposed-2nd GWL-C(1st) r = 0.0 r > 0.0 (2nd) r = 0.0 r > 0.0

30% G1 0.4454
±0.0044

0.4406
±0.0031

0.4414
±0.0070

0.6348
±0.0054

0.6259
±0.0082

0.7801
±0.0080

0.8430
±0.0018

G2 0.4411
±0.0038

0.4407
±0.0049

0.4423
±0.0028

0.6486
±0.0110

0.6140
±0.0096

0.7505
±0.0159

0.8290
±0.0013

50% G1 0.4115
±0.0102

0.4167
±0.0051

0.4151
±0.0040

0.6387
±0.0070

0.6270
±0.0069

0.7676
±0.0112

0.8615
±0.0010

G2 0.4253
±0.0059

0.4227
±0.0053

0.4187
±0.0085

0.6317
±0.0132

0.6087
±0.0052

0.7328
±0.0183

0.8496
±0.0009

70% G1 0.3890
±0.0097

0.3852
±0.0055

0.3952
±0.0188

0.6188
±0.0095

0.6162
±0.0181

0.7609
±0.0123

0.8610
±0.0013

G2 0.3937
±0.0091

0.3881
±0.0059

0.3821
±0.0043

0.6157
±0.0068

0.6039
±0.0093

0.7174
±0.0158

0.8406
±0.0020

Moreover, balanced graphs with nodes of similar degrees are
likely to hinder the improvement of the proposed method, as
demonstrated in the case of the Facebook-Twitter dataset.

4) Node2vec as the base embedding method: Instead of
the LINE embedding method, node2vec is used as the base
embedding method in the proposed model7. Experiments with
the same settings described previously were conducted. Table
VI reports a result for the MC3 dataset when the size of the
training data varies. The proposed method works surprisingly
well in this scenario. For all training data sizes, the proposed
method with r > 0.0 improves the AUC scores of node2vec
significantly and also outperforms GWL-C, whose AUC scores
are the highest when LINE is used as the base embedding
method, with big margins. The degradation of the AUC scores
when r = 0.0 again demonstrates the importance of the node
weight in the node matching process via optimal transport.

7Our implementation of node2vec refers to https://github.com/aditya-
grover/node2vec and https://github.com/Andras7/word2vec-pytorch.

V. RELATED WORK

1) Heuristic approaches for link prediction: Many methods
for link prediction are designed on carefully handcrafted
heuristic scores. Defined on pairs of unconnected nodes, the
scores are expected to be proportional to the probability that a
link exists between those nodes. Heuristic methods are mostly
based on heuristic observations such as two nodes who share
many common neighbor nodes are likely to be connected.
Some of the popular scores like Common Neighbors [1],
Adamic-Ada Index [2], Jaccard Similarity Index [3], [4] are
derived from the local similarity between the nodes. Other
scores like Katz Index [19] and SimRank [20] are derived
from the global similarity. Those methods are fast, highly
parallelizable, and perform well in many settings. However,
when heuristic assumptions are not met, the performances drop
significantly.

2) Graph Embedding: Recently, graph-embedding methods
are successfully applied to link prediction. They are not
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Fig. 4. ROC-AUC scores w.r.t. the percentage of common nodes between the two graphs (From left to right are of the Small-facebook, Facebook-Twitter, and
MC3 datasets, respectively. The Facebook-Twitter dataset’s figure is divided into two parts for clearer visualization.) Interestingly, the performance remains
similar for different amount of common nodes between the graphs.

TABLE VI
ROC-AUC SCORES OF THE MC3 DATASET WITH NODE2VEC

The proposed method with node2vec as the base embedding method works surprisingly well for the MC3 dataset. When the node weight is considered
(r > 0.0), the proposed method outperforms both node2vec and GWL-C with big margins to achieve the highest ROC-AUC scores.

Train Graphs node2vec Proposed-node2vec GWL-C
r = 0.0 r > 0.0

30% G1 0.6093
±0.0219

0.6186
±0.0130

0.9080
±0.0042

0.8430
±0.0018

G2 0.6317
±0.0115

0.6196
±0.0062

0.9029
±0.0025

0.8290
±0.0013

50% G1 0.6858
±0.0197

0.6548
±0.0171

0.9183
±0.0042

0.8615
±0.0010

G2 0.7129
±0.0165

0.6250
±0.0100

0.9121
±0.0034

0.8496
±0.0009

70% G1 0.7554
±0.0208

0.6534
±0.0071

0.9257
±0.0047

0.8610
±0.0013

G2 0.7693
±0.0184

0.6403
±0.0200

0.9154
±0.0033

0.8406
±0.0020

designed on heuristic scores and aims to automatically learn
the graph structure of data instead. Nodes are mapped into low-
dimensional vector space, in which connected or closer nodes
are presented with more similar vectors. Popular methods
like Deepwalk [14] or node2vec [15] try to approximate the
probability of visiting a node on a fixed-length random walk.
If node v is close to node u in a graph, when traveling
randomly along the links started from node u, node v will
likely be visited with high probability. Therefore, node u and
node v will be mapped to similar vectors. Another method
like LINE [13] aims to approximate the “first-order” and the
“second-order” node proximities. The “first-order” proximity
of two nodes is proportional to the weight of their link,
while the “second-order” proximity considers the resemblance
between two nodes’ neighborhoods. Hence, two proteins that
interact intensely with each other or two users who share many
common friends will be presented with similar embedding
vectors. With the ability to extract structural information
efficiently in an automatic and data-driven way, the graph-
embedding based approach has shown favorable results and
achieved state-of-the-art performance in a variety of settings.

3) Cross-graph approaches: All of the above approaches
only consider information in one single graph. In reality, when

two or more graphs of a similar topological structure are avail-
able (e.g: two networks describe relationships between entities
of a same set), using complementary information among those
graphs can improve the performance and robustness of link
prediction. A few studies have been conducted following this
manner. Du et al. [17] define a heuristic comparability score
based on a variant of the Jaccard Similarity Index [3], [4]
for node alignment. A binary classifier is then employed to
predict new possible links. Both tasks are performed jointly via
cross-graph embedding and have shown to benefit each other.
Following this cross-graph research line, Xu et al. propose
the Gromov-Wasserstein Learning framework [16] for learning
node embedding and node alignment simultaneously. Aiming
to minimize Gromov-Wasserstein discrepancy [21] between
two graphs, the authors apply optimal transport for learning
node alignment and enhancing the quality of embedding
vectors. Although the framework is originally proposed to deal
with node alignment only and is not intended for handling link
prediction, the learned embedding vectors can be employed for
the link prediction task.

4) Link prediction on multiplex graphs: Similar to the
works on the cross-graph approaches, works on multiplex
graphs (sometimes known as “multi-view” graphs) also con-



sider information from multiple graphs for the link prediction
problem. A multiplex graph allows different types of links
between the nodes and can be modeled as a multiple-layer
graph, in which each layer is a homogeneous graph containing
links of only one specific type [22]. Link prediction on
multiplex graphs aims to predict potential hidden links in
one layer by leveraging information from other layers in the
graph [23], [24], [25]. However, the layers in a multiplex graph
need to be aligned through inter-layer links, which makes the
multiplex graph methods difficult to apply to the setting of
multiple unaligned graphs.

VI. CONCLUSION

Although the link prediction problem has been studied
extensively, existing works do not leverage the setting where
multiple related graph data are available. In this paper, we
follow the graph embedding approach and present a new
framework that addresses the problem on two unaligned graphs
simultaneously. Via optimal transport, link information in the
form of vectors’ closeness in the latent space is propagated
between graphs, which allows the embedding processes of
the two graphs to be associated and enhance each other.
Experiments on three datasets in different scenarios show
consistent advantages of the proposed method over the base
LINE embedding method, whose embedding process is in-
dependent for each individual graph. The proposed method
is flexible. Additional experiments have demonstrated the
promising performance of the proposed method combined with
node2vec. Technically, it can be extended for combining with
different existing graph embedding methods which can be
chosen according to characteristics of the graphs.

Currently, the performance of the proposed method is still
modest when the degree distributions of the two graphs are
balanced. To alleviate this limitation, we are looking into an
extension that employs Gromov-Wasserstein discrepancy [21]
as the alternating optimal transport approximation method,
whose objective is to minimize the structural dissimilarity
between different graphs. A solution where the probability
distributions p(k) are adaptively computed along with the opti-
mization instead of being predefined with the hyperparameter
r is also under investigation. For future works, we plan to
address a more general problem setting of three and more
unaligned graphs, where the multi-marginal optimal transport
is necessary.
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